Syllabus

Cambridge IGCSE ${ }^{\text {TM }}$
Mathematics 0580

Use this syllabus for exams in 2025, 2026 and 2027.
Exams are available in the June and November series.
Exams are also available in the March series in India.

Contents

Why choose Cambridge International? 2
1 Why choose this syllabus? 4
2 Syllabus overview 7
Aims 7
Content overview 8
Assessment overview 9
Assessment objectives 10
3 Subject content 12
Core subject content 12
Extended subject content 32
4 Details of the assessment 57
Core assessment 58
Extended assessment 59
List of formulas - Core (Paper 1 and Paper 3) 60
List of formulas - Extended (Paper 2 and Paper 4) 61
Mathematical conventions 62
Command words 64
5 What else you need to know 65
Before you start 65
Making entries 66
Accessibility and equality 66
After the exam 67
How students and teachers can use the grades 67
Grade descriptions 67
Changes to this syllabus for 2025, 2026 and 2027 68

Important: Changes to this syllabus

For information about changes to this syllabus for 2025, 2026 and 2027, go to page 68.

The latest syllabus is version 1, published September 2022.

Assessment overview

All candidates take two components.
Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1 and Paper 3. These candidates will be eligible for grades C to G .

Candidates who have studied the Extended subject content, and who are expected to achieve a grade C or above, should be entered for Paper 2 and Paper 4. These candidates will be eligible for grades A^{*} to E .

Candidates should have a scientific calculator for Paper 3 and Paper 4. Calculators are not allowed for Paper 1 and Paper 2.

Please see the Cambridge Handbook at www.cambridgeinternational.org/eoguide for guidance on use of calculators in the examinations.

Core assessment

Core candidates take Paper 1 and Paper 3. The questions are based on the Core subject content only:

Paper 1: Non-calculator (Core)

1 hour 30 minutes
80 marks
Structured and unstructured questions
Use of a calculator is not allowed
Externally assessed

Paper 3: Calculator (Core)

1 hour 30 minutes
80 marks
50\%
Structured and unstructured questions
A scientific calculator is required
Externally assessed

Extended assessment

Extended candidates take Paper 2 and Paper 4. The questions are based on the Extended subject content only:

Paper 2: Non-calculator (Extended)	
2 hours	
100 marks	
Structured and unstructured questions	
Use of a calculator is not allowed	
Externally assessed	

Paper 4: Calculator (Extended)

 2 hours100 marks
50\%
Structured and unstructured questions
A scientific calculator is required
Externally assessed

[^0]
Assessment objectives

The assessment objectives (AOs) are:

AO1 Knowledge and understanding of mathematical techniques

Candidates should be able to:

- recall and apply mathematical knowledge and techniques
- carry out routine procedures in mathematical and everyday situations
- understand and use mathematical notation and terminology
- perform calculations with and without a calculator
- organise, process, present and understand information in written form, tables, graphs and diagrams
- estimate, approximate and work to degrees of accuracy appropriate to the context and convert between equivalent numerical forms
- understand and use measurement systems in everyday use
- measure and draw using geometrical instruments to an appropriate degree of accuracy
- recognise and use spatial relationships in two and three dimensions.

AO2 Analyse, interpret and communicate mathematically

Candidates should be able to:

- analyse a problem and identify a suitable strategy to solve it, including using a combination of processes where appropriate
- make connections between different areas of mathematics
- recognise patterns in a variety of situations and make and justify generalisations
- make logical inferences and draw conclusions from mathematical data or results
- communicate methods and results in a clear and logical form
- interpret information in different forms and change from one form of representation to another.

Weighting for assessment objectives

The approximate weightings allocated to each of the assessment objectives (AOs) are summarised below.

Assessment objectives as a percentage of the Core qualification

Assessment objective	Weighting in IGCSE \%
AO1 Knowledge and understanding of mathematical techniques	$60-70$
AO2 Analyse, interpret and communicate mathematically	$30-40$
Total	100

Assessment objectives as a percentage of the Extended qualification

Assessment objective	Weighting in IGCSE \%
AO1 Knowledge and understanding of mathematical techniques	$40-50$
AO2 Analyse, interpret and communicate mathematically	$50-60$
Total	100

Assessment objectives as a percentage of each component

Assessment objective

	Paper 1	Paper 2	Paper 3	Paper 4
AO1 Knowledge and understanding of mathematical techniques	$60-70$	$40-50$	$60-70$	$40-50$
AO2 Analyse, interpret and communicate mathematically	$30-40$	$50-60$	$30-40$	$50-60$
Total	100	100	100	100

3 Subject content

This syllabus gives you the flexibility to design a course that will interest, challenge and engage your learners. Where appropriate you are responsible for selecting resources and examples to support your learners' study. These should be appropriate for the learners' age, cultural background and learning context as well as complying with your school policies and local legal requirements.

Learners should pursue an integrated course that allows them to fully develop their skills and understanding both with and without the use of a calculator.

Candidates study either the Core subject content or the Extended subject content. Candidates aiming for grades A^{*} to C should study the Extended subject content.

A List of formulas is provided on page 2 of the examination papers for candidates to refer to during the examinations. Please note that not all required formulas are given; the 'Notes and examples' column of the subject content will indicate where a formula is given in the examination papers and when a formula is not given, i.e. knowledge of a formula is required.

Core subject content

1 Number

C1.1 Types of number

Identify and use:

- natural numbers
- integers (positive, zero and negative)
- prime numbers
- square numbers
- cube numbers
- common factors
- common multiples
- rational and irrational numbers
- reciprocals.

1 Number (continued)

C1.2 Sets

Understand and use set language, notation and Venn diagrams to describe sets.

Notes and examples

Venn diagrams are limited to two sets.
The following set notation will be used:

- $\mathrm{n}(A) \quad$ Number of elements in set A
- $A^{\prime} \quad$ Complement of set A
- \mathscr{E} Universal set
- $A \cup B$ Union of A and B
- $A \cap B \quad$ Intersection of A and B.

Example definition of sets:
$A=\{x: x$ is a natural number $\}$
$B=\{a, b, c, \ldots\}$
$C=\{x: a \leqslant x \leqslant b\}$.

C1.3 Powers and roots

Calculate with the following:

- squares
- square roots
- cubes
- cube roots
- other powers and roots of numbers.

Notes and examples

Includes recall of squares and their corresponding roots from 1 to 15 , and recall of cubes and their corresponding roots of $1,2,3,4,5$ and 10, e.g.:

- Write down the value of $\sqrt{169}$.
- Work out $5^{2} \times \sqrt[3]{8}$.

C1.4 Fractions, decimals and percentages

1 Use the language and notation of the following in appropriate contexts:

- proper fractions
- improper fractions
- mixed numbers
- decimals
- percentages.

2 Recognise equivalence and convert between these forms.

Notes and examples

Candidates are expected to be able to write fractions in their simplest form.

Candidates are not expected to use recurring decimal notation.

C1.5 Ordering

Notes and examples

Order quantities by magnitude and demonstrate familiarity with the symbols $=, \neq,>,<, \geqslant$ and \leqslant.

1 Number (continued)

C1.6 The four operations

Use the four operations for calculations with integers, fractions and decimals, including correct ordering of operations and use of brackets.

Notes and examples

Includes:

- negative numbers
- improper fractions
- mixed numbers
- practical situations, e.g. temperature changes.

C1.7 Indices I

1 Understand and use indices (positive, zero and negative integers).

2 Understand and use the rules of indices.

Notes and examples

e.g. find the value of 7^{-2}.
e.g. find the value of $2^{-3} \times 2^{4},\left(2^{3}\right)^{2}, 2^{3} \div 2^{4}$.

C1.8 Standard form

Notes and examples

1 Use the standard form $A \times 10^{n}$ where n is a positive or negative integer and $1 \leqslant A<10$.

2 Convert numbers into and out of standard form.
3 Calculate with values in standard form. Core candidates are expected to calculate with standard form only on Paper 3.

C1.9 Estimation

1 Round values to a specified degree of accuracy.
2 Make estimates for calculations involving numbers, quantities and measurements.

3 Round answers to a reasonable degree of accuracy in the context of a given problem.

Notes and examples

Includes decimal places and significant figures. e.g. write 5764 correct to the nearest thousand. e.g. by writing each number correct to 1 significant figure, estimate the value of $\frac{41.3}{9.79 \times 0.765}$.

Notes and examples

e.g. write down the upper bound of a length measured correct to the nearest metre.
Candidates are not expected to find the bounds of the results of calculations which have used data rounded to a specified accuracy.

1 Number (continued)

C1.11 Ratio and proportion

Notes and examples

Understand and use ratio and proportion to:

- give ratios in their simplest form
e.g. $20: 30: 40$ in its simplest form is $2: 3: 4$.
- divide a quantity in a given ratio
- use proportional reasoning and ratios in context.
e.g. adapt recipes; use map scales; determine best value.

C1.12 Rates

1 Use common measures of rate.

2 Apply other measures of rate.

3 Solve problems involving average speed.

Notes and examples

e.g. calculate with:

- hourly rates of pay
- exchange rates between currencies
- flow rates
- fuel consumption.
e.g. calculate with:
- pressure
- density
- population density.

Required formulas will be given in the question.
Knowledge of speed/distance/time formula is required.
e.g. A cyclist travels 45 km in 3 hours 45 minutes. What is their average speed?
Notation used will be, e.g. m/s (metres per second), $\mathrm{g} / \mathrm{cm}^{3}$ (grams per cubic centimetre).

C1.13 Percentages

Notes and examples

1 Calculate a given percentage of a quantity.
2 Express one quantity as a percentage of another.
3 Calculate percentage increase or decrease.
4 Calculate with simple and compound interest.

Formulas are not given.
Percentage calculations may include:

- deposit
- discount
- profit and loss (as an amount or a percentage)
- earnings
- percentages over 100%.

1 Number (continued)

C1.14 Using a calculator

1 Use a calculator efficiently.

2 Enter values appropriately on a calculator.

3 Interpret the calculator display appropriately.

Notes and examples

e.g. know not to round values within a calculation and to only round the final answer.
e.g. enter 2 hours 30 minutes as 2.5 hours or $2^{\circ} 30^{\prime} 0^{\prime \prime}$.
e.g. in money 4.8 means $\$ 4.80$; in time 3.25 means 3 hours 15 minutes.

C1.15 Time

1 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units.

2 Calculate times in terms of the 24 -hour and 12-hour clock.

3 Read clocks and timetables.

Notes and examples

1 year $=365$ days .

In the 24-hour clock, for example, 3.15 a.m. will be denoted by 0315 and 3.15 p.m. by 1515 .

Includes problems involving time zones, local times and time differences.

C1.16 Money

Notes and examples
1 Calculate with money.
2 Convert from one currency to another.

C1.17 Extended content only.

C1.18 Extended content only.

2 Algebra and graphs

C2.1 Introduction to algebra

Notes and examples

1 Know that letters can be used to represent generalised numbers.

2 Substitute numbers into expressions and formulas.

C2.2 Algebraic manipulation

1 Simplify expressions by collecting like terms.

2 Expand products of algebraic expressions.

3 Factorise by extracting common factors.

Notes and examples

Simplify means give the answer in its simplest form, e.g. $2 a+3 b+5 a-9 b=7 a-6 b$.
e.g. expand $3 x(2 x-4 y)$.

Includes products of two brackets involving one variable, e.g. expand $(2 x+1)(x-4)$.
Factorise means factorise fully, e.g. $9 x^{2}+15 x y=3 x(3 x+5 y)$.

C2.3 Extended content only.

C2.4 Indices II

1 Understand and use indices (positive, zero and negative).
2 Understand and use the rules of indices.

Notes and examples

e.g. $2^{x}=32$. Find the value of x.
e.g. simplify:

- $\left(5 x^{3}\right)^{2}$
- $12 a^{5} \div 3 a^{-2}$
- $6 x^{7} y^{4} \times 5 x^{-5} y$.

Knowledge of logarithms is not required.

C2.5 Equations

1 Construct simple expressions, equations and formulas.

2 Solve linear equations in one unknown.
3 Solve simultaneous linear equations in two unknowns.

4 Change the subject of simple formulas.

Notes and examples

e.g. write an expression for a number that is 2 more than n.
Includes constructing linear simultaneous
equations.
Examples include:

- $3 x+4=10$
- $5-2 x=3(x+7)$.
e.g. change the subject of formulas where:
- the subject only appears once
- there is not a power or root of the subject.

2 Algebra and graphs (continued)

C2.6 Inequalities

Represent and interpret inequalities, including on a number line.

C2.7 Sequences

1 Continue a given number sequence or pattern.

2 Recognise patterns in sequences, including the term-to-term rule, and relationships between different sequences.

3 Find and use the nth term of the following sequences:
(a) linear
(b) simple quadratic
e.g. find the nth term of $2,5,10,17$
(c) simple cubic.

Notes and examples

When representing and interpreting inequalities on a number line:

- open circles should be used to represent strict inequalities (<, >)
- closed circles should be used to represent inclusive inequalities (\leqslant, \geqslant)
e.g. $-3 \leqslant x<1$

Notes and examples

e.g. write the next two terms in this sequence:

$$
1,3,6,10,15, \ldots, \ldots
$$

2 Algebra and graphs (continued)

C2.10 Graphs of functions

Notes and examples

1 Construct tables of values, and draw, recognise and interpret graphs for functions of the following forms:

- $a x+b$
- $\pm x^{2}+a x+b$
- $\frac{a}{x}(x \neq 0)$
where a and b are integer constants.
2 Solve associated equations graphically, including
e.g. find the intersection of a line and a curve. finding and interpreting roots by graphical methods.

C2.11 Sketching curves

Notes and examples

Recognise, sketch and interpret graphs of the following functions:
(a) linear
(b) quadratic.

Knowledge of symmetry and roots is required. Knowledge of turning points is not required.

C2.12 Extended content only.

C2.13 Extended content only.

3 Coordinate geometry

C3.1 Coordinates
 Notes and examples

Use and interpret Cartesian coordinates in
two dimensions

C3.2 Drawing linear graphs

Draw straight-line graphs for linear equations

C3.3 Gradient of linear graphs

Find the gradient of a straight line.

Notes and examples

Equations will be given in the form $y=m x+c$ (e.g. $y=-2 x+5$), unless a table of values is given.

C3.4 Extended content only.

C3.5 Equations of linear graphs

Interpret and obtain the equation of a straight-line graph in the form $y=m x+c$.

Notes and examples

Questions may:

- use and request lines in the forms
$y=m x+c$
$x=k$
- involve finding the equation when the graph is given
- ask for the gradient or y-intercept of a graph from an equation, e.g. find the gradient and y-intercept of the graph with the equation $y=6 x+3$.

Candidates are expected to give equations of a line in a fully simplified form.

C3.6 Parallel lines

Find the gradient and equation of a straight line parallel to a given line.

Notes and examples

e.g. find the equation of the line parallel to
$y=4 x-1$ that passes through $(1,-3)$

C3.7 Extended content only.

4 Geometry

C4.1 Geometrical terms

1 Use and interpret the following geometrical terms:

- point
- vertex
- line
- parallel
- perpendicular
- bearing
- right angle
- acute, obtuse and reflex angles
- interior and exterior angles
- similar
- congruent
- scale factor.

2 Use and interpret the vocabulary of:

- triangles
- special quadrilaterals
- polygons
- nets
- simple solids.

Notes and examples

Candidates are not expected to show that two shapes are congruent.

Includes the following terms:
Triangles:

- equilateral
- isosceles
- scalene
- right-angled.

Quadrilaterals:

- square
- rectangle
- kite
- rhombus
- parallelogram
- trapezium.

Polygons:

- regular and irregular polygons
- pentagon
- hexagon
- octagon
- decagon.

4 Geometry (continued)

C4.1 Geometrical terms (continued)

3 Use and interpret the vocabulary of a circle.

C4.2 Geometrical constructions

1 Measure and draw lines and angles.

2 Construct a triangle, given the lengths of all sides, using a ruler and pair of compasses only.
3 Draw, use and interpret nets.

Notes and examples

Simple solids:

- cube
- cuboid
- prism
- cylinder
- pyramid
- cone
- sphere (term 'hemisphere' not required)
- face
- surface
- edge.

Includes the following terms:

- centre
- radius (plural radii)
- diameter
- circumference
- semicircle
- chord
- tangent
- arc
- sector
- segment.

4 Geometry (continued)

C4.3 Scale drawings

1 Draw and interpret scale drawings.
2 Use and interpret three-figure bearings.

C4.4 Similarity

Calculate lengths of similar shapes.

C4.5 Symmetry

Recognise line symmetry and order of rotational symmetry in two dimensions.

C4.6 Angles

1 Calculate unknown angles and give simple explanations using the following geometrical properties:

- sum of angles at a point $=360^{\circ}$
- sum of angles at a point on a straight line $=180^{\circ}$
- vertically opposite angles are equal
- angle sum of a triangle $=180^{\circ}$ and angle sum of a quadrilateral $=360^{\circ}$.

2 Calculate unknown angles and give geometric explanations for angles formed within parallel lines:

- corresponding angles are equal
- alternate angles are equal
- co-interior (supplementary) angles sum to 180°.

3 Know and use angle properties of regular polygons.

Notes and examples

A ruler must be used for all straight edges.
Bearings are measured clockwise from north (000° to 360°).
e.g. find the bearing of A from B if the bearing of B from A is 025°.

Includes an understanding of the terms north, east, south and west.
e.g. point D is due east of point C.

Notes and examples

Notes and examples

Includes properties of triangles, quadrilaterals and polygons directly related to their symmetries.

Notes and examples

Knowledge of three-letter notation for angles is required, e.g. angle $A B C$. Candidates are expected to use the correct geometrical terminology when giving reasons for answers.

Includes exterior and interior angles, and angle sum.

4 Geometry (continued)

C4.7 Circle theorems

Calculate unknown angles and give explanations using the following geometrical properties of circles:

- angle in a semicircle $=90^{\circ}$
- angle between tangent and radius $=90^{\circ}$.

C4.8 Extended content only.

5 Mensuration

C5.1 Units of measure

Use metric units of mass, length, area, volume and capacity in practical situations and convert quantities into larger or smaller units.

Notes and examples

Units include:

- mm, cm, m, km
- $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$
- $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$
- ml, l
- g, kg.

Conversion between units includes:

- between different units of area, e.g. $\mathrm{cm}^{2} \leftrightarrow \mathrm{~m}^{2}$
- between units of volume and capacity, e.g. $\mathrm{m}^{3} \leftrightarrow$ litres.

C5.2 Area and perimeter

Notes and examples

Carry out calculations involving the perimeter and area of a rectangle, triangle, parallelogram and Except for area of a triangle, formulas are not given. trapezium.

C5.3 Circles, arcs and sectors

1 Carry out calculations involving the circumference and area of a circle.

2 Carry out calculations involving arc length and sector area as fractions of the circumference and area of a circle, where the sector angle is a factor of 360°.

Notes and examples

Answers may be asked for in terms of π.
Formulas are given in the List of formulas.

C5.4 Surface area and volume

Carry out calculations and solve problems involving the surface area and volume of a:

- cuboid
- prism
- cylinder
- sphere
- pyramid
- cone.

Notes and examples

Answers may be asked for in terms of π.
The following formulas are given in the List of formulas:

- curved surface area of a cylinder
- curved surface area of a cone
- surface area of a sphere
- volume of a prism
- volume of a pyramid
- volume of a cylinder
- volume of a cone
- volume of a sphere.

5 Mensuration (continued)

C5.5 Compound shapes and parts of shapes

1 Carry out calculations and solve problems involving perimeters and areas of:

- compound shapes
- parts of shapes.

2 Carry out calculations and solve problems involving surface areas and volumes of:

- compound solids
- parts of solids.

6 Trigonometry

C6.1 Pythagoras' theorem
 Notes and examples

Know and use Pythagoras' theorem.

C6.2 Right-angled triangles

1 Know and use the sine, cosine and tangent ratios for acute angles in calculations involving sides and angles of a right-angled triangle.

2 Solve problems in two dimensions using Pythagoras' theorem and trigonometry.

Angles will be given in degrees and answers should be written in degrees, with decimals correct to one decimal place.

Knowledge of bearings may be required.

C6.3 Extended content only.

C6.4 Extended content only.

C6.5 Extended content only.

C6.6 Extended content only.

7 Transformations and vectors

C7.1 Transformations

Recognise, describe and draw the following transformations:
1 Reflection of a shape in a vertical or horizontal line.

2 Rotation of a shape about the origin, vertices or midpoints of edges of the shape, through multiples of 90°.

3 Enlargement of a shape from a centre by a scale
4 Translation of a shape by a vector $\binom{x}{y}$.

Notes and examples

Questions will not involve combinations of transformations. A ruler must be used for all straight edges.

Positive and fractional scale factors only.

C7.2 Extended content only.

C7.3 Extended content only.

C7.4 Extended content only.

8 Probability

C8.1 Introduction to probability

1 Understand and use the probability scale from 0 to 1.

Calculate the probability of a single event.
3 Understand that the probability of an event not occurring $=1-$ the probability of the event occurring.

Notes and examples

Probability notation is not required.
Probabilities should be given as a fraction, decimal or percentage. Problems may require using information from tables, graphs or Venn diagrams (limited to two sets).
e.g. The probability that a counter is blue is 0.8 . What is the probability that it is not blue?

C8.2 Relative and expected frequencies

1 Understand relative frequency as an estimate of probability.

2 Calculate expected frequencies.

Notes and examples

e.g. use results of experiments with a spinner to estimate the probability of a given outcome.
e.g. use probability to estimate an expected value from a population.

Includes understanding what is meant by fair and bias.

C8.3 Probability of combined events

Calculate the probability of combined events using, where appropriate:

- sample space diagrams
- Venn diagrams
- tree diagrams.

Notes and examples

Combined events will only be with replacement.

Venn diagrams will be limited to two sets.
In tree diagrams, outcomes will be written at the end of the branches and probabilities by the side of the branches.

C8.4 Extended content only.

9 Statistics

C9.1 Classifying statistical data
Classify and tabulate statistical data.

C9.2 Interpreting statistical data

1 Read, interpret and draw inferences from tables and statistical diagrams.

2 Compare sets of data using tables, graphs and statistical measures.

3 Appreciate restrictions on drawing conclusions purposes for which these are used.

Notes and examples

e.g. tally tables, two-way tables.

Notes and examples

e.g. compare averages and ranges between two data sets.
from given data.

C9.3 Averages and range

Calculate the mean, median, mode and range for individual data and distinguish between the

Notes and examples
Data may be in a list or frequency table, but will not be grouped.

C9.4 Statistical charts and diagrams

Draw and interpret:
(a) bar charts
(b) pie charts
(c) pictograms
(d) stem-and-leaf diagrams
(e) simple frequency distributions.

Notes and examples

Includes composite (stacked) and dual (side-byside) bar charts.

Stem-and-leaf diagrams should have ordered data with a key.

9 Statistics (continued)

C9.5 Scatter diagrams

1 Draw and interpret scatter diagrams.
2 Understand what is meant by positive, negative and zero correlation.

3 Draw by eye, interpret and use a straight line of best fit.

Notes and examples

Plotted points should be clearly marked, for example as small crosses (x).

A line of best fit:

- should be a single ruled line drawn by inspection
- should extend across the full data set
- does not need to coincide exactly with any of the points but there should be a roughly even distribution of points either side of the line over its entire length.

C9.6 Extended content only.

C9.7 Extended content only.

Extended subject content

1 Number

E1.1 Types of number

Identify and use:

- natural numbers
- integers (positive, zero and negative)
- prime numbers
- square numbers
- cube numbers
- common factors
- common multiples
- rational and irrational numbers
- reciprocals.

Notes and examples

Example tasks include:

- convert between numbers and words, e.g. six billion is 6000000000 10007 is ten thousand and seven
- express 72 as a product of its prime factors
- find the highest common factor (HCF) of two numbers
- find the lowest common multiple (LCM) of two numbers.

E1.2 Sets

Understand and use set language, notation and Venn diagrams to describe sets and represent relationships between sets.

Notes and examples

Venn diagrams are limited to two or three sets.
The following set notation will be used:

- $\mathrm{n}(A) \quad$ Number of elements in set A
- $\in \quad$ "... is an element of ..."
- $\notin \quad$ ".. is not an element of ..."
- $A^{\prime} \quad$ Complement of set A
- $\varnothing \quad$ The empty set
- $\mathscr{E} \quad$ Universal set
- $A \subseteq B \quad A$ is a subset of B
- $A \nsubseteq B \quad A$ is not a subset of B
- $A \cup B \quad$ Union of A and B
- $A \cap B \quad$ Intersection of A and B.

Example definition of sets:
$A=\{x: x$ is a natural number $\}$
$B=\{(x, y): y=m x+c\}$
$C=\{x: a \leqslant x \leqslant b\}$
$D=\{a, b, c, \ldots\}$.

E1.3 Powers and roots

Calculate with the following:

- squares
- square roots
- cubes
- cube roots
- other powers and roots of numbers.

Notes and examples

Includes recall of squares and their corresponding roots from 1 to 15, and recall of cubes and their corresponding roots of $1,2,3,4,5$ and 10, e.g.:

- Write down the value of $\sqrt{169}$.
- Work out $5^{2} \times \sqrt[3]{8}$.

1 Number (continued)

E1.4 Fractions, decimals and percentages

Notes and examples

1 Use the language and notation of the following in appropriate contexts:

- proper fractions
- improper fractions
- mixed numbers
- decimals

Candidates are expected to be able to write fractions in their simplest form.
Recurring decimal notation is required, e.g.

- $0.1 \dot{7}=0.1777 \ldots$
- $0.1 \dot{2} \dot{3}=0.1232323 \ldots$
- $0.123=0.123123 \ldots$.
- percentages.

2 Recognise equivalence and convert between these forms.

Includes converting between recurring decimals and fractions and vice versa,
e.g. write 0.17 as a fraction.

E1.5 Ordering

Notes and examples

Order quantities by magnitude and demonstrate familiarity with the symbols $=, \neq,>,<, \geqslant$ and \leqslant.

E1.6 The four operations

Use the four operations for calculations with integers, fractions and decimals, including correct ordering of operations and use of brackets.

Notes and examples

Includes:

- negative numbers
- improper fractions
- mixed numbers
- practical situations, e.g. temperature changes.

E1.7 Indices I
 1 Understand and use indices (positive, zero, negative, and fractional).

2 Understand and use the rules of indices.

E1.8 Standard form

1 Use the standard form $A \times 10^{n}$ where n is a positive or negative integer and $1 \leqslant A<10$.

2 Convert numbers into and out of standard form.
3 Calculate with values in standard form.

1 Number (continued)

E1.9 Estimation

1 Round values to a specified degree of accuracy.
2 Make estimates for calculations involving numbers, quantities and measurements.

3 Round answers to a reasonable degree of accuracy in the context of a given problem.

Notes and examples

Includes decimal places and significant figures. e.g. write 5764 correct to the nearest thousand.
e.g. by writing each number correct to 1 significant figure, estimate the value of
$\frac{41.3}{9.79 \times 0.765}$.

E1.10 Limits of accuracy

1 Give upper and lower bounds for data rounded to a specified accuracy.

2 Find upper and lower bounds of the results of calculations which have used data rounded to a specified accuracy.

Notes and examples

e.g. write down the upper bound of a length measured correct to the nearest metre.

Example calculations include:

- calculate the upper bound of the perimeter or the area of a rectangle given dimensions measured to the nearest centimetre
- find the lower bound of the speed given rounded values of distance and time.

E1.11 Ratio and proportion

Notes and examples

e.g. $20: 30: 40$ in its simplest form is $2: 3: 4$.
e.g. adapt recipes; use map scales; determine best value.

1 Number (continued)

E1.12 Rates

1 Use common measures of rate.

2 Apply other measures of rate.

3 Solve problems involving average speed.

E1.13 Percentages

Notes and examples

1 Calculate a given percentage of a quantity.
2 Express one quantity as a percentage of another.
3 Calculate percentage increase or decrease.

4 Calculate with simple and compound interest.

5 Calculate using reverse percentages.

Problems may include repeated percentage change.

Formulas are not given.
e.g. find the cost price given the selling price and the percentage profit.
Percentage calculations may include:

- deposit
- discount
- profit and loss (as an amount or a percentage)
- earnings
- percentages over 100%.

E1.14 Using a calculator

1 Use a calculator efficiently.

2 Enter values appropriately on a calculator.

3 Interpret the calculator display appropriately.

Notes and examples

e.g. know not to round values within a calculation and to only round the final answer.
e.g. enter 2 hours 30 minutes as 2.5 hours or $2^{\circ} 30^{\prime} 0^{\prime \prime}$.
e.g. in money 4.8 means $\$ 4.80$; in time 3.25 means 3 hours 15 minutes.

1 Number (continued)

E1.15 Time

1 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units.

2 Calculate times in terms of the 24-hour and 12-hour clock.

3 Read clocks and timetables.

Notes and examples

1 year $=365$ days .

In the 24-hour clock, for example, 3.15 a.m. will be denoted by 0315 and 3.15 p.m. by 1515 .

Includes problems involving time zones, local times and time differences.

E1.16 Money

Notes and examples

1 Calculate with money.
2 Convert from one currency to another.

E1.17 Exponential growth and decay

Use exponential growth and decay.

Notes and examples

e.g. depreciation, population change.

Knowledge of e is not required.

E1.18 Surds

1 Understand and use surds, including simplifying expressions.

2 Rationalise the denominator.

Notes and examples

Examples include:

- $\sqrt{20}=2 \sqrt{5}$
- $\sqrt{200}-\sqrt{32}=6 \sqrt{2}$.

Examples include:

- $\frac{10}{\sqrt{5}}=2 \sqrt{5}$
- $\frac{1}{-1+\sqrt{3}}=\frac{1+\sqrt{3}}{2}$.

2 Algebra and graphs

E2.1 Introduction to algebra

Notes and examples

1 Know that letters can be used to represent generalised numbers.

2 Substitute numbers into expressions and formulas.

E2.2 Algebraic manipulation

1 Simplify expressions by collecting like terms.

2 Expand products of algebraic expressions.

3 Factorise by extracting common factors.
4 Factorise expressions of the form:

- $a x+b x+k a y+k b y$
- $a^{2} x^{2}-b^{2} y^{2}$
- $a^{2}+2 a b+b^{2}$
- $a x^{2}+b x+c$
- $a x^{3}+b x^{2}+c x$.

5 Complete the square for expressions in the form $a x^{2}+b x+c$.

Notes and examples

Simplify means give the answer in its simplest form, e.g. $2 a^{2}+3 a b-1+5 a^{2}-9 a b+4=7 a^{2}-6 a b+3$.
e.g. expand $3 x(2 x-4 y),(3 x+y)(x-4 y)$.

Includes products of more than two brackets,
e.g. expand $(x-2)(x+3)(2 x+1)$.

Factorise means factorise fully, e.g. $9 x^{2}+15 x y=3 x(3 x+5 y)$.

E2.3 Algebraic fractions

1 Manipulate algebraic fractions.

Notes and examples

Examples include:

- $\frac{x}{3}+\frac{x-4}{2}$
- $\frac{2 x}{3}-\frac{3(x-5)}{2}$
- $\frac{3 a}{4} \times \frac{9 a}{10}$
- $\frac{3 a}{4} \div \frac{9 a}{10}$
- $\frac{1}{x-2}+\frac{x+1}{x-3}$.

2 Factorise and simplify rational expressions.
e.g. $\frac{x^{2}-2 x}{x^{2}-5 x+6}$.

2 Algebra and graphs (continued)

E2.4 Indices II

1 Understand and use indices (positive, zero, negative and fractional).

2 Understand and use the rules of indices.

Notes and examples

e.g. solve:

- $32^{x}=2$
- $5^{x+1}=25^{x}$.
e.g. simplify:
- $3 x^{-4} \times \frac{2}{3} x^{\frac{1}{2}}$
- $\frac{2}{5} x^{\frac{1}{2}} \div 2 x^{-2}$
- $\left(\frac{2 x^{5}}{3}\right)^{3}$.

Knowledge of logarithms is not required.

E2.5 Equations

1 Construct expressions, equations and formulas.

2 Solve linear equations in one unknown.

3 Solve fractional equations with numerical and linear algebraic denominators.

Notes and examples

e.g. write an expression for the product of two consecutive even numbers.
Includes constructing simultaneous equations.
Examples include:

- $3 x+4=10$
- $5-2 x=3(x+7)$.

Examples include:

- $\frac{x}{2 x+1}=4$
- $\frac{2}{x+2}+\frac{3}{2 x-1}=1$
- $\frac{x}{x+2}=\frac{3}{x-6}$.

4 Solve simultaneous linear equations in two unknowns.

5 Solve simultaneous equations, involving one linear and one non-linear.

6 Solve quadratic equations by factorisation, completing the square and by use of the quadratic formula.

7 Change the subject of formulas.

With powers no higher than two.

Includes writing a quadratic expression in completed square form.
Candidates may be expected to give solutions in surd form.
The quadratic formula is given in the List of formulas.
e.g. change the subject of a formula where:

- the subject appears twice
- there is a power or root of the subject.

2 Algebra and graphs (continued)

E2.6 Inequalities

1 Represent and interpret inequalities, including on a number line.

2 Construct, solve and interpret linear inequalities.

3 Represent and interpret linear inequalities in two variables graphically.

4 List inequalities that define a given region.

E2.7 Sequences

1 Continue a given number sequence or pattern.

2 Recognise patterns in sequences, including the term-to-term rule, and relationships between different sequences.

3 Find and use the nth term of sequences.

Notes and examples

When representing and interpreting inequalities on a number line:

- open circles should be used to represent strict inequalities (<, >)
- closed circles should be used to represent inclusive inequalities (\leqslant, \geqslant).
e.g. $-3 \leqslant x<1$

Examples include:

- $3 x<2 x+4$
- $-3 \leqslant 3 x-2<7$.

The following conventions should be used:

- broken lines should be used to represent strict inequalities (<, >)
- solid lines should be used to represent inclusive inequalities (\leqslant, \geqslant)
- shading should be used to represent unwanted regions (unless otherwise directed in the question).
e.g.

Linear programming problems are not included.

Notes and examples

Subscript notation may be used, e.g. T_{n} is the nth term of sequence T.
Includes linear, quadratic, cubic and exponential sequences and simple combinations of these.

2 Algebra and graphs (continued)

E2.8 Proportion

Express direct and inverse proportion in algebraic terms and use this form of expression to find unknown quantities.

E2.9 Graphs in practical situations

1 Use and interpret graphs in practical situations including travel graphs and conversion graphs.

2 Draw graphs from given data.
3 Apply the idea of rate of change to simple kinematics involving distance-time and speed-time graphs, acceleration and deceleration.

4 Calculate distance travelled as area under a speed-time graph.

Notes and examples

Includes linear, square, square root, cube and cube root proportion
Knowledge of proportional symbol (\propto) is required.

Notes and examples

Includes estimation and interpretation of the gradient of a tangent at a point.

Areas will involve linear sections of the graph only.

E2.10 Graphs of functions

1 Construct tables of values, and draw, recognise and interpret graphs for functions of the following forms:

- $a x^{n}$ (includes sums of no more than three of these)
- $a b^{x}+c$
where $n=-2,-1,-\frac{1}{2}, 0, \frac{1}{2}, 1,2,3 ; a$ and c are rational numbers; and b is a positive integer.

2 Solve associated equations graphically, including finding and interpreting roots by graphical methods

3 Draw and interpret graphs representing exponential growth and decay problems.

Notes and examples

Examples include

- $y=x^{3}+x-4$
- $y=2 x+\frac{3}{x^{2}}$
- $y=\frac{1}{4} \times 2^{x}$.
e.g. finding the intersection of a line and a curve.

2 Algebra and graphs (continued)

E2.11 Sketching curves

Recognise, sketch and interpret graphs of the following functions:
(a) linear
(b) quadratic
(c) cubic
(d) reciprocal
(e) exponential.

Notes and examples

Where a, b, c, and d are rational numbers, functions will be equivalent to:

- $a x+b y=c$
- $y=a x^{2}+b x+c$
- $y=a x^{3}+d$
- $y=a x^{3}+b x^{2}+c x$.

Where m and n are integers, functions will be equivalent to:

- $y=\frac{m}{x}+n$
- $y=m^{x}+n$.

Knowledge of turning points, vertical and horizontal asymptotes, roots and symmetry is required.
Finding turning points of quadratics by completing the square may be required.

E2.12 Differentiation

1 Estimate gradients of curves by drawing tangents.
2 Use the derivatives of functions of the form $a x^{n}$, where a is a rational constant and n is a positive integer or zero, and simple sums of not more than three of these.

3 Apply differentiation to gradients and stationary points (turning points).

4 Discriminate between maxima and minima by any method.

Notes and examples

$\frac{\mathrm{d} y}{\mathrm{~d} x}$ notation will be expected.

Maximum and minimum points may be identified by:

- an accurate sketch
- use of the second differential
- inspecting the gradient either side of a turning point.
Candidates are not expected to identify points of inflection.

2 Algebra and graphs (continued)

E2.13 Functions

1 Understand functions, domain and range and use function notation.

2 Understand and find inverse functions $\mathrm{f}^{-1}(x)$.
3 Form composite functions as defined by $\operatorname{gf}(x)=\mathrm{g}(\mathrm{f}(x))$.

Notes and examples

Examples include:

- $\mathrm{f}(x)=3 x-5$
- $\mathrm{g}(x)=\frac{3(x+4)}{5}$
- $\mathrm{h}(x)=2 x^{2}+3$.
e.g. $\mathrm{f}(x)=\frac{3}{x+2}$ and $\mathrm{g}(x)=(3 x+5)^{2}$. Find $\mathrm{fg}(x)$.

Give your answer as a fraction in its simplest form.

Candidates are not expected to find the domains and ranges of composite functions.
This topic may include mapping diagrams.

3 Coordinate geometry

E3.1 Coordinates

Notes and examples

Use and interpret Cartesian coordinates in two dimensions.

E3.2 Drawing linear graphs

Draw straight-line graphs for linear equations.

Notes and examples

Examples include:

- $y=-2 x+5$
- $y=7-4 x$
- $3 x+2 y=5$.

E3.3 Gradient of linear graphs

1 Find the gradient of a straight line.
2 Calculate the gradient of a straight line from the coordinates of two points on it.

E3.4 Length and midpoint

Notes and examples

1 Calculate the length of a line segment.
2 Find the coordinates of the midpoint of a line segment.

E3.5 Equations of linear graphs

Interpret and obtain the equation of a straight-line graph.

Notes and examples

Questions may:

- use and request lines in different forms, e.g. $a x+b y=c$
$y=m x+c$
$x=k$
- involve finding the equation when the graph is given
- ask for the gradient or y-intercept of a graph from an equation, e.g. find the gradient and y-intercept of the graph with equation $5 x+4 y=8$.
Candidates are expected to give equations of a line in a fully simplified form.

3 Coordinate geometry (continued)

E3.6 Parallel lines

Find the gradient and equation of a straight line parallel to a given line.

E3.7 Perpendicular lines
Find the gradient and equation of a straight line perpendicular to a given line.

Notes and examples

e.g. find the equation of the line parallel to $y=4 x-1$ that passes through $(1,-3)$.

Notes and examples

Examples include:

- find the gradient of a line perpendicular to $2 y=3 x+1$
- find the equation of the perpendicular bisector of the line joining the points $(-3,8)$ and $(9,-2)$.

4 Geometry

E4.1 Geometrical terms

1 Use and interpret the following geometrical terms:

- point
- vertex
- line
- plane
- parallel
- perpendicular
- perpendicular bisector
- bearing
- right angle
- acute, obtuse and reflex angles
- interior and exterior angles
- similar
- congruent
- scale factor.

2 Use and interpret the vocabulary of:

- triangles
- special quadrilaterals
- polygons
- nets
- solids.

Notes and examples

Candidates are not expected to show that two shapes are congruent.

Includes the following terms.
Triangles:

- equilateral
- isosceles
- scalene
- right-angled.

Quadrilaterals:

- square
- rectangle
- kite
- rhombus
- parallelogram
- trapezium.

4 Geometry (continued)

E4.1 Geometrical terms (continued)

3 Use and interpret the vocabulary of a circle.

Notes and examples

Polygons:

- regular and irregular polygons
- pentagon
- hexagon
- octagon
- decagon.

Solids:

- cube
- cuboid
- prism
- cylinder
- pyramid
- cone
- sphere
- hemisphere
- frustum
- face
- surface
- edge.

Includes the following terms:

- centre
- radius (plural radii)
- diameter
- circumference
- semicircle
- chord
- tangent
- major and minor arc
- sector
- segment.

4 Geometry (continued)

E4.2 Geometrical constructions

1 Measure and draw lines and angles.

2 Construct a triangle, given the lengths of all sides, using a ruler and pair of compasses only.

3 Draw, use and interpret nets.

Notes and examples

A ruler should be used for all straight edges.
Constructions of perpendicular bisectors and angle bisectors are not required.
e.g. construct a rhombus by drawing two triangles. Construction arcs must be shown.

Examples include:

- draw nets of cubes, cuboids, prisms and pyramids
- use measurements from nets to calculate volumes and surface areas.

E4.3 Scale drawings

1 Draw and interpret scale drawings.
2 Use and interpret three-figure bearings.

Notes and examples

A ruler must be used for all straight edges.
Bearings are measured clockwise from north (000° to 360°).
e.g. find the bearing of A from B if the bearing of B from A is 025°.
Includes an understanding of the terms north, east, south and west.
e.g. point D is due east of point C.

E4.4 Similarity

1 Calculate lengths of similar shapes.
2 Use the relationships between lengths and areas of similar shapes and lengths, surface areas and volumes of similar solids.

3 Solve problems and give simple explanations involving similarity.

E4.5 Symmetry

1 Recognise line symmetry and order of rotational symmetry in two dimensions.

2 Recognise symmetry properties of prisms, cylinders, pyramids and cones.

Notes and examples

Includes use of scale factor, e.g.
$\frac{\text { Volume of } A}{\text { Volume of } B}=\frac{(\text { Length of } A)^{3}}{(\text { Length of } B)^{3}}$.
Includes showing that two triangles are similar using geometric reasons.

Notes and examples

Includes properties of triangles, quadrilaterals and polygons directly related to their symmetries.
e.g. identify planes and axes of symmetry.

4 Geometry (continued)

E4.6 Angles

1 Calculate unknown angles and give simple explanations using the following geometrical properties:

- sum of angles at a point $=360^{\circ}$
- sum of angles at a point on a straight line $=180^{\circ}$
- vertically opposite angles are equal
- angle sum of a triangle $=180^{\circ}$ and angle sum of a quadrilateral $=360^{\circ}$.

2 Calculate unknown angles and give geometric explanations for angles formed within parallel lines:

- corresponding angles are equal
- alternate angles are equal
- co-interior (supplementary) angles sum to 180°.

3 Know and use angle properties of regular and irregular polygons.

E4.7 Circle theorems I

Calculate unknown angles and give explanations using the following geometrical properties of circles:

- angle in a semicircle $=90^{\circ}$
- angle between tangent and radius $=90^{\circ}$
- angle at the centre is twice the angle at the circumference
- angles in the same segment are equal
- opposite angles of a cyclic quadrilateral sum to 180° (supplementary)
- alternate segment theorem.

Notes and examples

Knowledge of 3-letter notation for angles is required, e.g. angle $A B C$. Candidates are expected to use the correct geometrical terminology when giving reasons for answers.

Includes exterior and interior angles, and angle sum.

Notes and examples

Candidates are expected to use the geometrical properties listed in the syllabus when giving reasons for answers.

E4.8 Circle theorems II

Use the following symmetry properties of circles:

- equal chords are equidistant from the centre
- the perpendicular bisector of a chord passes through the centre
- tangents from an external point are equal in length.

Notes and examples

Candidates are expected to use the geometrical properties listed in the syllabus when giving reasons for answers.

5 Mensuration

E5.1 Units of measure

Use metric units of mass, length, area, volume and capacity in practical situations and convert quantities into larger or smaller units.

Notes and examples

Units include:

- mm, cm, m, km
- $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$
- $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$
- ml, l
- g, kg.

Conversion between units includes:

- between different units of area, e.g. $\mathrm{cm}^{2} \leftrightarrow \mathrm{~m}^{2}$
- between units of volume and capacity, e.g. $\mathrm{m}^{3} \leftrightarrow$ litres.

E5.2 Area and perimeter

Notes and examples

Carry out calculations involving the perimeter and area of a rectangle, triangle, parallelogram and trapezium.

Except for the area of a triangle, formulas are not given.

E5.3 Circles, arcs and sectors

1 Carry out calculations involving the circumference and area of a circle.

2 Carry out calculations involving arc length and sector area as fractions of the circumference and area of a circle.

Notes and examples

Answers may be asked for in terms of π. Formulas are given in the List of formulas. Includes minor and major sectors.

E5.4 Surface area and volume

Carry out calculations and solve problems involving the surface area and volume of a:

- cuboid
- prism
- cylinder
- sphere
- pyramid
- cone.

Notes and examples

Answers may be asked for in terms of π.
The following formulas are given in the List of formulas:

- curved surface area of a cylinder
- curved surface area of a cone
- surface area of a sphere
- volume of a prism
- volume of a pyramid
- volume of a cylinder
- volume of a cone
- volume of a sphere.

5 Mensuration (continued)

E5.5 Compound shapes and parts of shapes

1 Carry out calculations and solve problems involving perimeters and areas of:

- compound shapes
- parts of shapes.

2 Carry out calculations and solve problems involving surface areas and volumes of:

- compound solids
- parts of solids.
e.g. find the surface area and volume of a frustum.

6 Trigonometry

E6.1 Pythagoras' theorem

Notes and examples

Know and use Pythagoras' theorem.

E6.2 Right-angled triangles

1 Know and use the sine, cosine and tangent ratios for acute angles in calculations involving sides and angles of a right-angled triangle.

2 Solve problems in two dimensions using Pythagoras' theorem and trigonometry.

3 Know that the perpendicular distance from a point to a line is the shortest distance to the line.

4 Carry out calculations involving angles of elevation and depression.

Notes and examples

Angles will be given in degrees and answers should be written in degrees, with decimals correct to one decimal place.

Knowledge of bearings may be required.

E6.3 Exact trigonometric values

Notes and examples

Know the exact values of:
$1 \sin x$ and $\cos x$ for $x=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°.
$2 \tan x$ for $x=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°.

E6.4 Trigonometric functions

Notes and examples

1 Recognise, sketch and interpret the following graphs for $0^{\circ} \leqslant x \leqslant 360^{\circ}$:

- $y=\sin x$
- $y=\cos x$
- $y=\tan x$.

2 Solve trigonometric equations involving $\sin x$, $\cos x$ or $\tan x$, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
e.g. solve:

- $\sin x=\frac{\sqrt{3}}{2}$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
- $2 \cos x+1=0$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

6 Trigonometry (continued)

E6.5 Non-right-angled triangles

1 Use the sine and cosine rules in calculations involving lengths and angles for any triangle.

2 Use the formula area of triangle $=\frac{1}{2} a b \sin C$.

Notes and examples

Includes problems involving obtuse angles and the ambiguous case.

The sine and cosine rules and the formula for area of a triangle are given in the List of formulas.

E6.6 Pythagoras' theorem and trigonometry in 3D

Carry out calculations and solve problems in three dimensions using Pythagoras' theorem and trigonometry, including calculating the angle between a line and a plane.

7 Transformations and vectors

E7.1 Transformations

Recognise, describe and draw the following transformations:
1 Reflection of a shape in a straight line.
2 Rotation of a shape about a centre through multiples of 90°.

3 Enlargement of a shape from a centre by a scale factor.
4 Translation of a shape by a vector $\binom{x}{y}$.

Notes and examples

Questions may involve combinations of transformations. A ruler must be used for all straight edges.

Positive, fractional and negative scale factors may be used.

E7.2 Vectors in two dimensions

Notes and examples

1 Describe a translation using a vector represented Vectors will be printed as $\overrightarrow{A B}$ or \mathbf{a}. by $\binom{x}{y}, \overrightarrow{A B}$ or \mathbf{a}.

2 Add and subtract vectors.
3 Multiply a vector by a scalar.

E7.3 Magnitude of a vector

Notes and examples

Calculate the magnitude of a vector $\binom{x}{y}$ as $\sqrt{x^{2}+y^{2}}$.

The magnitudes of vectors will be denoted by modulus signs, e.g.

- $|\mathbf{a}|$ is the magnitude of \mathbf{a}
- $|\overrightarrow{A B}|$ is the magnitude of $\overrightarrow{A B}$.

E7.4 Vector geometry

Notes and examples

1 Represent vectors by directed line segments.
2 Use position vectors.
3 Use the sum and difference of two or more vectors to express given vectors in terms of two coplanar vectors.

4 Use vectors to reason and to solve geometric problems.

Examples include:

- show that vectors are parallel
- show that 3 points are collinear
- solve vector problems involving ratio and similarity.

8 Probability

E8.1 Introduction to probability

1 Understand and use the probability scale from 0 to 1.

2 Understand and use probability notation.

4 Understand that the probability of an event not occurring $=1-$ the probability of the event occurring.

Notes and examples

$\mathrm{P}(A)$ is the probability of A
$\mathrm{P}\left(A^{\prime}\right)$ is the probability of $\operatorname{not} A$

Probabilities should be given as a fraction, decimal or percentage.
Problems may require using information from tables, graphs or Venn diagrams.
e.g. $\mathrm{P}(B)=0.8$, find $\mathrm{P}\left(B^{\prime}\right)$

E8.2 Relative and expected frequencies

1 Understand relative frequency as an estimate of probability.

2 Calculate expected frequencies.

Notes and examples

e.g. use results of experiments with a spinner to estimate the probability of a given outcome.
e.g. use probability to estimate an expected value from a population.

Includes understanding what is meant by fair and bias.

E8.3 Probability of combined events

Calculate the probability of combined events using, where appropriate:

- sample space diagrams
- Venn diagrams
- tree diagrams.

Notes and examples

Combined events could be with or without replacement.

The notation $\mathrm{P}(A \cap B)$ and $\mathrm{P}(A \cup B)$ may be used in the context of Venn diagrams.
On tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches.

E8.4 Conditional probability

Calculate conditional probability using Venn diagrams, tree diagrams and tables.

Notes and examples

Knowledge of notation, $\mathrm{P}(A \mid B)$, and formulas relating to conditional probability is not required.

9 Statistics

E9.1 Classifying statistical data

Classify and tabulate statistical data.

E9.2 Interpreting statistical data

1 Read, interpret and draw inferences from tables and statistical diagrams.

2 Compare sets of data using tables, graphs and statistical measures.

3 Appreciate restrictions on drawing conclusions from given data.

Notes and examples

e.g. tally tables, two-way tables.

Notes and examples

e.g. compare averages and measures of spread between two data sets.

E9.3 Averages and measures of spread

Notes and examples
1 Calculate the mean, median, mode, quartiles, range and interquartile range for individual data and distinguish between the purposes for which these are used.

2 Calculate an estimate of the mean for grouped discrete or grouped continuous data.

3 Identify the modal class from a grouped frequency distribution.

E9.4 Statistical charts and diagrams

Notes and examples

Draw and interpret:
(a) bar charts Includes composite (stacked) and dual (side-by-
(b) pie charts
(c) pictograms
(d) stem-and-leaf diagrams
(e) simple frequency distributions.
side) bar charts.

Stem-and-leaf diagrams should have ordered data with a key.

9 Statistics (continued)

E9.5 Scatter diagrams

1 Draw and interpret scatter diagrams.

2 Understand what is meant by positive, negative and zero correlation.

3 Draw by eye, interpret and use a straight line of best fit.

Notes and examples

Plotted points should be clearly marked, for example as small crosses (x).

A line of best fit:

- should be a single ruled line drawn by inspection
- should extend across the full data set
- does not need to coincide exactly with any of the points but there should be a roughly even distribution of points either side of the line over its entire length.

E9.6 Cumulative frequency diagrams

1 Draw and interpret cumulative frequency tables and diagrams.

2 Estimate and interpret the median, percentiles, quartiles and interquartile range from cumulative frequency diagrams.

Notes and examples

Plotted points on a cumulative frequency diagram should be clearly marked, for example as small crosses (\times), and be joined with a smooth curve.

E9.7 Histograms

1 Draw and interpret histograms.
2 Calculate with frequency density.

Notes and examples

On histograms, the vertical axis is labelled
'Frequency density'.
Frequency density is defined as
frequency density $=$ frequency \div class width

4 Details of the assessment

All candidates take two components.

Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1 and Paper 3. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended subject content and who are expected to achieve a grade C or above should be entered for Paper 2 and Paper 4. These candidates will be eligible for grades A^{\star} to E.

All papers assess AO1 Knowledge and understanding of mathematical techniques and AO2 Analyse, interpret and communicate mathematically.

All papers consist of structured and unstructured questions. Structured questions contain parts, e.g. (a), (b), (c)(i), etc., and unstructured questions do not.

Questions may assess more than one topic from the subject content.

For all papers, candidates write their answers on the question paper. They must show all necessary working in the spaces provided.

Additional materials for exams

For both Core and Extended papers, candidates should have the following geometrical instruments:

- a pair of compasses
- a protractor
- a ruler.

Tracing paper may be used as an additional material for all four papers. Candidates cannot bring their own tracing paper but may request it during the examination.

Candidates should have a scientific calculator for Papers 3 and 4; one with trigonometric functions is strongly recommended. Algebraic or graphical calculators are not permitted. Please see the Cambridge Handbook at www.cambridgeinternational.org/eoguide for guidance on use of calculators in the examinations.
Calculators are not allowed for Paper 1 and Paper 2.

The Additional materials list for exams is updated before each series. You can view the list for the relevant series and year on our website in the Phase 4 - Before the exams section of the Cambridge Exams Officer's Guide at www.cambridgeinternational.org/eoguide

Core assessment

Paper 1 Non-calculator (Core)

Written paper, 1 hour 30 minutes, 80 marks
Use of a calculator is not allowed.
Candidates answer all questions.
This paper consists of questions based on the Core subject content, except for C1.14 Using a calculator. This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Core candidates.
This written paper is an externally set assessment, marked by Cambridge.

Paper 3 Calculator (Core)

Written paper, 1 hour 30 minutes, 80 marks
A scientific calculator is required
Candidates answer all questions.
This paper consists of questions based on the Core subject content.
Candidates should give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
To earn accuracy marks, candidates should avoid rounding figures until they have their final answer. Where candidates need to use a final answer in later parts of the question, they should use the value of the final answer before it was rounded.

Candidates should use the value of π from their calculator or the value of 3.142.
This paper will be weighted at 50% of the total qualification.
This is a compulsory component for Core candidates.
This written paper is an externally set assessment, marked by Cambridge.

Extended assessment

Paper 2 Non-calculator (Extended)

Written paper, 2 hours, 100 marks
Use of a calculator is not allowed.
Candidates answer all questions.
This paper consists of questions based on the Extended subject content, except for E1.14 Using a calculator. This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Extended candidates.
This written paper is an externally set assessment, marked by Cambridge.

Paper 4 Calculator (Extended)

Written paper, 2 hours, 100 marks
A scientific calculator is required
Candidates answer all questions.
This paper consists of questions based on the Extended subject content.
Candidates should give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
To earn accuracy marks, candidates should avoid rounding figures until they have their final answer. Where candidates need to use a final answer in later parts of the question, they should use the value of the final answer before it was rounded.

Candidates should use the value of π from their calculator or the value of 3.142.
This paper will be weighted at 50% of the total qualification.
This is a compulsory component for Extended candidates
This written paper is an externally set assessment, marked by Cambridge.

List of formulas - Extended (Paper 2 and Paper 4)

This list of formulas will be included on page 2 of Paper 2 and Paper 4.

Area, A, of triangle, base b, height h.

Area, A, of circle of radius r.

Circumference, C, of circle of radius r.

Curved surface area, A, of cylinder of radius r, height h.

Curved surface area, A, of cone of radius r, sloping edge l.

Surface area, A, of sphere of radius r.

Volume, V, of prism, cross-sectional area A, length l.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

For the equation $\quad a x^{2}+b x+c=0$, where $a \neq 0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

For the triangle shown,

$A=\frac{1}{2} b h$
$A=\pi r^{2}$
$C=2 \pi r$
$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=A l$
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area $=\frac{1}{2} a b \sin C$

Mathematical conventions

Mathematics is a universal language where there are some similarities and differences around the world. The guidance below outlines the conventions used in Cambridge examinations and we encourage candidates to follow these conventions.

Working with graphs

- A plot of a graph should have points clearly marked, for example as small crosses (x), and must:
- be drawn on graph or squared paper
- cover a given range of values by calculating the coordinates of points and connecting them appropriately (where values are given, it will include enough points to determine a curve; where a table of values is not provided, the candidate must decide on the appropriate number of points required to determine the curve)
- have each point plotted to an accuracy of within half of the smallest square on the grid.
- A sketch of a graph does not have to be accurate or to scale, nor does it need to be on graph or squared paper, but it must:
- be drawn freehand
- show the most important features, e.g. x-intercepts, y-intercepts, turning points, symmetry, with coordinates or values marked on the axes, where appropriate
- have labelled axes, e.g. with x and y
- interact with the axes appropriately, e.g. by intersecting or by tending towards
- fall within the correct quadrants
- show the correct long-term behaviour.
- Graphs should extend as far as possible across any given grid, within any constraints of the domain.
- Where graphs of functions are:
- linear, they should be ruled
- non-linear, the points should be joined with a smooth curve.
- A tangent to a curve should touch the curve at the required point and be in contact with the curve for the minimum possible distance. It should not cross the curve at the point where it is a tangent.
- Values should be read off a graph to an accuracy of within half of the smallest square on the grid.

Communicating mathematically

- If candidates are asked to show their working, they cannot gain full marks without clearly communicating their method, even if their final answer is correct.
- A numerical answer should not be given as a combination of fractions and decimals, e.g. $\frac{1}{0.2}$ is not acceptable.

Accuracy

- Answers are expected to be given in their simplest form unless the question states otherwise.
- Where a question asks for 'exact values' the answer may need to be given in terms of π or in surd form, depending on the question.
- Where answers are not exact values, they should be given to three significant figures unless a different accuracy is defined in the question.
- Answers that are exact to four or five significant figures should not be rounded unless the question states otherwise.
- In order to obtain an answer correct to an appropriate degree of accuracy, a higher degree of accuracy will often be needed within the working.
- If a question asks to prove or show a given answer to a specified degree of accuracy, candidates must show full working, intermediate answers and the final answer to at least one degree of accuracy more than that asked for.

Command words

Command words and their meanings help candidates know what is expected from them in the exams. The table below includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context.

Command word	What it means
Calculate	work out from given facts, figures or information
Construct	make an accurate drawing
Determine	establish with certainty
Describe	state the points of a topic / give characteristics and main features
Explain	set out purposes or reasons / make the relationships between things clear / say why and/or how and support with relevant evidence
Give	produce an answer from a given source or recall/memory
Plot	mark point(s) on a graph
Show (that)	provide structured evidence that leads to a given result
Sketch	make a simple freehand drawing showing the key features
State	express in clear terms
Work out	calculate from given facts, figures or information with or without the use of a calculator
Write	give an answer in a specific form
Write down	give an answer without significant working

Changes to this syllabus for 2025, 2026 and 2027

The syllabus has been reviewed and revised for first examination in 2025.

You must read the whole syllabus before planning your teaching programme.

Changes to syllabus content

- The wording of the learning outcomes has been updated and additional notes and examples included, to clarify the depth of teaching.
- The subject content has been refreshed and updated, with some topics and learning outcomes added and some removed. Significant changes to content have been summarised below.
- No new topics have been added to the Core subject content.
- Content removed from the Core subject content:
- adding and subtracting vectors
- multiplying a vector by a scalar
- data collection (it is expected that data collection will be part of a course based on this syllabus, although it will not be assessed in an examination).
- Content added to the Core subject content:
- inequalities
- recall of certain squares, cubes and roots
- Content removed from the Extended subject content:
- proper subsets
- linear programming
- congruence criteria (knowledge of congruence itself is still in the syllabus)
- data collection (it is expected that data collection will be part of a course based on this syllabus, although it will not be assessed in an examination)
- box-and-whisker plots
- Content added to the Extended subject content:
- recall of certain squares, cubes and roots
- surds
- exponential graphs where the power is $1 / 2$ or $-1 / 2$
- domain and range
- exact trigonometric values
- Other content has been clarified within topics; you are advised to read the subject content in the syllabus carefully for details.
- The teaching time has not changed.

Changes to syllabus content (continued)

- The Details of the assessment section includes:
- the List of formulas that is provided in the examinations
- mathematical conventions.
- The wording of the learner attributes has been updated to improve the clarity of wording.
- The wording of the aims has been updated to improve the clarity of wording but the meaning is the same.
- The wording of the assessment objectives (AOs) has been updated. There are no changes to the knowledge and skills being assessed for each AO.

Changes to assessment (including changes to specimen papers)

- A non-calculator assessment has been introduced at each tier to build candidates' confidence in working mathematically without a calculator.
- The examination papers have been rebalanced to provide improved accessibility and a better candidate experience. The marks, durations and weightings are the same for both papers in a tier.
- All examination papers will:
- include the List of formulas on page 2
- include a mixture of structured and unstructured questions
- have questions that are the same standard as in the existing assessment.
- Changes to Paper 1 (Core)
- this is now a non-calculator paper, calculators are not allowed in the exam
- number of marks increased to 80 marks
- duration has changed to 1 hour 30 minutes
- weighting has changed to 50%
- Changes to Paper 2 (Extended)
- this is now a non-calculator paper, calculators are not allowed in the exam
- number of marks increased to 100 marks
- duration has changed to 2 hours
- weighting has changed to 50%
- Changes to Paper 3 (Core)
- number of marks decreased to 80 marks
- duration has changed to 1 hour 30 minutes
- weighting has changed to 50%
- Calculators are still allowed in Paper 3.
- Changes to Paper 4 (Extended)
- number of marks decreased to 100 marks
- duration has changed to 2 hours
- weighting has changed to 50%
- Calculators are still allowed in Paper 4.
- The specimen assessment materials have been updated to reflect the changes to the assessment.

[^0]: Information on availability is in the Before you start section.

