

Syllabus Cambridge IGCSE[™] Mathematics 0580

Use this syllabus for exams in 2025, 2026 and 2027. Exams are available in the June and November series. Exams are also available in the March series in India.

For the purposes of screen readers, any mention in this document of Cambridge IGCSE refers to Cambridge International General Certificate of Secondary Education.

Contents

N	Why choose Cambridge International?		
1	Why choose this syllabus?	4	
2	Syllabus overview	7	
	Aims	7	
	Content overview	8	
	Assessment overview	9	
	Assessment objectives	10	
3	Subject content	12	
	Core subject content	12	
	Extended subject content	32	
4	Details of the assessment	57	
	Core assessment	58	
	Extended assessment	59	
	List of formulas – Core (Paper 1 and Paper 3)	60	
	List of formulas – Extended (Paper 2 and Paper 4)	61	
	Mathematical conventions	62	
	Command words	64	
5	What else you need to know	65	
	Before you start	65	
	Making entries	66	
	Accessibility and equality	66	
	After the exam	67	
	How students and teachers can use the grades	67	
	Grade descriptions	67	
	Changes to this syllabus for 2025, 2026 and 2027	68	

Important: Changes to this syllabus

For information about changes to this syllabus for 2025, 2026 and 2027, go to page 68. The latest syllabus is version 1, published September 2022. i

Assessment overview

All candidates take two components.

Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1 and Paper 3. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended subject content, and who are expected to achieve a grade C or above, should be entered for Paper 2 and Paper 4. These candidates will be eligible for grades A* to E.

Candidates should have a scientific calculator for Paper 3 and Paper 4. Calculators are **not** allowed for Paper 1 and Paper 2.

Please see the *Cambridge Handbook* at **www.cambridgeinternational.org/eoguide** for guidance on use of calculators in the examinations.

Core assessment

Core candidates take Paper 1 and Paper 3. The questions are based on the Core subject content only:

Paper 1: Non-calculator (Core)		Paper 3: Calculator (Core)	
1 hour 30 minutes		1 hour 30 minutes	
80 marks	50%	80 marks	50%
Structured and unstructured questions		Structured and unstructured questions	
Use of a calculator is not allowed		A scientific calculator is required	
Externally assessed		Externally assessed	

Extended assessment

Extended candidates take Paper 2 and Paper 4. The questions are based on the Extended subject content only:

Paper 2: Non-calculator (Extended)		Paper 4: Calculator (Extended)	
2 hours		2 hours	
100 marks	50%	100 marks	50%
Structured and unstructured questions		Structured and unstructured questions	
Use of a calculator is not allowed		A scientific calculator is required	
Externally assessed		Externally assessed	

Information on availability is in the Before you start section.

Assessment objectives

The assessment objectives (AOs) are:

AO1 Knowledge and understanding of mathematical techniques

Candidates should be able to:

- recall and apply mathematical knowledge and techniques
- carry out routine procedures in mathematical and everyday situations
- understand and use mathematical notation and terminology
- perform calculations with and without a calculator
- organise, process, present and understand information in written form, tables, graphs and diagrams
- estimate, approximate and work to degrees of accuracy appropriate to the context and convert between equivalent numerical forms
- understand and use measurement systems in everyday use
- measure and draw using geometrical instruments to an appropriate degree of accuracy
- recognise and use spatial relationships in two and three dimensions.

AO2 Analyse, interpret and communicate mathematically

Candidates should be able to:

- analyse a problem and identify a suitable strategy to solve it, including using a combination of processes where appropriate
- make connections between different areas of mathematics
- recognise patterns in a variety of situations and make and justify generalisations
- make logical inferences and draw conclusions from mathematical data or results
- communicate methods and results in a clear and logical form
- interpret information in different forms and change from one form of representation to another.

Weighting for assessment objectives

The approximate weightings allocated to each of the assessment objectives (AOs) are summarised below.

Assessment objectives as a percentage of the Core qualification

Assessment objective	Weighting in IGCSE %
AO1 Knowledge and understanding of mathematical techniques	60–70
AO2 Analyse, interpret and communicate mathematically	30–40
Total	100

Assessment objectives as a percentage of the Extended qualification

Assessment objective	Weighting in IGCSE %
AO1 Knowledge and understanding of mathematical techniques	40-50
AO2 Analyse, interpret and communicate mathematically	50-60
Total	100

Assessment objectives as a percentage of each component

Assessment objective	Weighting in components %			
	Paper 1	Paper 2	Paper 3	Paper 4
AO1 Knowledge and understanding of mathematical techniques	60–70	40–50	60–70	40–50
AO2 Analyse, interpret and communicate mathematically	30-40	50-60	30-40	50-60
Total	100	100	100	100

3 Subject content

This syllabus gives you the flexibility to design a course that will interest, challenge and engage your learners. Where appropriate you are responsible for selecting resources and examples to support your learners' study. These should be appropriate for the learners' age, cultural background and learning context as well as complying with your school policies and local legal requirements.

Learners should pursue an integrated course that allows them to fully develop their skills and understanding both with and without the use of a calculator.

Candidates study either the Core subject content or the Extended subject content. Candidates aiming for grades A* to C should study the Extended subject content.

A List of formulas is provided on page 2 of the examination papers for candidates to refer to during the examinations. Please note that not all required formulas are given; the 'Notes and examples' column of the subject content will indicate where a formula is given in the examination papers and when a formula is **not** given, i.e. knowledge of a formula is required.

Core subject content

1 Number

C1.1	Types of number	Notes and examples
Identi	fy and use:	Example tasks include:
 na in pi sa ca ca ca ca ca 	atural numbers negers (positive, zero and negative) rime numbers quare numbers ube numbers ommon factors ommon multiples ational and irrational numbers	 convert between numbers and words, e.g. six billion is 600000000 10007 is ten thousand and seven express 72 as a product of its prime factors find the highest common factor (HCF) of two numbers find the lowest common multiple (LCM) of two numbers.
• re	eciprocals.	

C1.2 Sets	Notes and examples
Understand and use set language, notation and Venn diagrams to describe sets.	Venn diagrams are limited to two sets. The following set notation will be used: • $n(A)$ Number of elements in set A • A' Complement of set A • C Universal set • $A \cup B$ Union of A and B • $A \cap B$ Intersection of A and B . Example definition of sets: $A = \{x: x \text{ is a natural number}\}$ $B = \{a, b, c,\}$ $C = \{x: a \leq x \leq b\}$. Notes and examples
 Calculate with the following: squares square roots cubes cube roots other powers and roots of numbers. 	Includes recall of squares and their corresponding roots from 1 to 15, and recall of cubes and their corresponding roots of 1, 2, 3, 4, 5 and 10, e.g.: • Write down the value of $\sqrt{169}$. • Work out $5^2 \times \sqrt[3]{8}$.
C1.4 Fractions, decimals and percentages	Notes and examples
 Use the language and notation of the following in appropriate contexts: proper fractions improper fractions mixed numbers decimals percentages. Recognise equivalence and convert between these forms. 	Candidates are expected to be able to write fractions in their simplest form. Candidates are not expected to use recurring decimal notation. Candidates are not expected to demonstrate the conversion of a recurring decimal to a fraction and vice versa.
C1.5 Ordering	Notes and examples

Order quantities by magnitude and demonstrate familiarity with the symbols =, \neq , >, < , \geq and \leq .

C1.6 The four operations	Notes and examples
Use the four operations for calculations with integers, fractions and decimals, including correct ordering of operations and use of brackets.	 Includes: negative numbers improper fractions mixed numbers practical situations, e.g. temperature changes.
C1.7 Indices I	Notes and examples
1 Understand and use indices (positive, zero and negative integers).	e.g. find the value of 7^{-2} .
2 Understand and use the rules of indices.	e.g. find the value of $2^{-3} \times 2^4$, $(2^3)^2$, $2^3 \div 2^4$.
C1.8 Standard form	Notes and examples
1 Use the standard form $A \times 10^n$ where <i>n</i> is a positive or negative integer and $1 \le A < 10$.	
2 Convert numbers into and out of standard form.	
3 Calculate with values in standard form.	Core candidates are expected to calculate with standard form only on Paper 3.
C1.9 Estimation	Notes and examples
1 Round values to a specified degree of accuracy.	Includes decimal places and significant figures.
2 Make estimates for calculations involving	e.g. write 5764 correct to the nearest thousand.
numbers, quantities and measurements.	e.g. by writing each number correct to 1 significant
3 Round answers to a reasonable degree of accuracy in the context of a given problem.	figure, estimate the value of $\frac{41.3}{9.79 \times 0.765}$.
C1.10 Limits of accuracy	Notes and examples
Give upper and lower bounds for data rounded to a specified accuracy.	e.g. write down the upper bound of a length measured correct to the nearest metre. Candidates are not expected to find the bounds of the results of calculations which have used data

rounded to a specified accuracy.

C1.11 Ratio and proportion	Notes and examples
 Understand and use ratio and proportion to: give ratios in their simplest form divide a quantity in a given ratio use proportional reasoning and ratios in context. 	e.g. 20:30:40 in its simplest form is 2:3:4. e.g. adapt recipes; use map scales; determine best value.
C1.12 Rates	Notes and examples
1 Use common measures of rate.	 e.g. calculate with: hourly rates of pay exchange rates between currencies flow rates fuel consumption.
2 Apply other measures of rate.	 e.g. calculate with: pressure density population density.
3 Solve problems involving average speed.	 Knowledge of speed/distance/time formula is required. e.g. A cyclist travels 45 km in 3 hours 45 minutes. What is their average speed? Notation used will be, e.g. m/s (metres per second), g/cm³ (grams per cubic centimetre).
C1.13 Percentages	Notes and examples

- 1 Calculate a given percentage of a quantity.
- 2 Express one quantity as a percentage of another.
- 3 Calculate percentage increase or decrease.
- 4 Calculate with simple and compound interest.

Formulas are **not** given.

Percentage calculations may include:

- deposit
- discount
- profit and loss (as an amount or a percentage)
- earnings
- percentages over 100%.

C1.14 Using a calculator	Notes and examples
1 Use a calculator efficiently.	e.g. know not to round values within a calculation and to only round the final answer.
2 Enter values appropriately on a calculator.	e.g. enter 2 hours 30 minutes as 2.5 hours or 2° 30' 0''.
3 Interpret the calculator display appropriately.	e.g. in money 4.8 means \$4.80; in time 3.25 means 3 hours 15 minutes.
C1.15 Time	Notes and examples
1 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units.	1 year = 365 days.
 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units. Calculate times in terms of the 24-hour and 12-hour clock. 	1 year = 365 days. In the 24-hour clock, for example, 3.15 a.m. will be denoted by 03 15 and 3.15 p.m. by 15 15.
 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units. Calculate times in terms of the 24-hour and 12-hour clock. Read clocks and timetables. 	1 year = 365 days. In the 24-hour clock, for example, 3.15 a.m. will be denoted by 03 15 and 3.15 p.m. by 15 15. Includes problems involving time zones, local times and time differences.

C1.16 Money

Notes and examples

- 1 Calculate with money.
- 2 Convert from one currency to another.

C1.17 Extended content only.

C1.18 Extended content only.

2 Algebra and graphs

C2.1 Introduction to algebra	Notes and examples
1 Know that letters can be used to represent generalised numbers.	
2 Substitute numbers into expressions and formulas.	
C2.2 Algebraic manipulation	Notes and examples
1 Simplify expressions by collecting like terms.	Simplify means give the answer in its simplest form, e.g. $2a + 3b + 5a - 9b = 7a - 6b$.
2 Expand products of algebraic expressions.	e.g. expand $3x(2x - 4y)$. Includes products of two brackets involving one variable, e.g. expand $(2x + 1)(x - 4)$.
3 Factorise by extracting common factors.	Factorise means factorise fully, e.g. $9x^2 + 15xy = 3x(3x + 5y)$.

C2.3 Extended content only.

C2.4 Indices II		Notes and examples
1 Understand and use indic negative).	ces (positive, zero and	e.g. $2^x = 32$. Find the value of x.
2 Understand and use the r	rules of indices.	e.g. simplify: • $(5x^3)^2$ • $12a^5 \div 3a^{-2}$ • $6x^7y^4 \times 5x^{-5}y$. Knowledge of logarithms is not required.
C2.5 Equations		Notes and examples
1 Construct simple express		
formulas.	sions, equations and	e.g. write an expression for a number that is 2 more than <i>n</i> . Includes constructing linear simultaneous equations.
 2 Solve linear equations in a 	sions, equations and one unknown.	e.g. write an expression for a number that is 2 more than <i>n</i>.Includes constructing linear simultaneous equations.Examples include:
 2 Solve linear equations in a 3 Solve simultaneous linear unknowns. 	sions, equations and one unknown. r equations in two	e.g. write an expression for a number that is 2 more than <i>n</i> . Includes constructing linear simultaneous equations. Examples include: • $3x + 4 = 10$ • $5 - 2x = 3(x + 7)$.
 Solve linear equations in a Solve simultaneous linear unknowns. Change the subject of sin 	sions, equations and one unknown. ⁻ equations in two nple formulas.	e.g. write an expression for a number that is 2 more than <i>n</i> . Includes constructing linear simultaneous equations. Examples include: • $3x + 4 = 10$ • $5 - 2x = 3(x + 7)$. e.g. change the subject of formulas where:

• there is **not** a power or root of the subject.

C2.6	Inequalities	Notes and examples
Repres numbe	ent and interpret inequalities, including on a r line.	When representing and interpreting inequalities on a number line:
		 open circles should be used to represent strict inequalities (<, >)
		 closed circles should be used to represent inclusive inequalities (≤, ≥)
		e.g. $-3 \le x < 1$
		-3 -2 -1 0 1
C2.7	Sequences	Notes and examples
1 Cont	tinue a given number sequence or pattern.	e.g. write the next two terms in this sequence: 1, 3, 6, 10, 15, ,
2 Reco term	ognise patterns in sequences, including the	

- 3 Find and use the *n*th term of the following sequences:
 - (a) linear
 - (b) simple quadratic

different sequences.

(c) simple cubic.

e.g. find the *n*th term of 2, 5, 10, 17

C2.8 Extended content only.

C2.9	Graphs in practical situations	Notes and examples
1 Use inclu	and interpret graphs in practical situations uding travel graphs and conversion graphs.	e.g. interpret the gradient of a straight-line graph as a rate of change.
2 Drav	w graphs from given data.	e.g. draw a distance–time graph to represent a journey.

C2.10 Graphs of functions	Notes and examples
1 Construct tables of values, and draw, recognise and interpret graphs for functions of the following forms:	
• $ax + b$ • $\pm x^2 + ax + b$ • $\frac{a}{x} (x \neq 0)$ where a and b are integer constants	
where u and v are integer constants.	
2 Solve associated equations graphically, including finding and interpreting roots by graphical methods.	e.g. find the intersection of a line and a curve.
C2.11 Sketching curves	Notes and examples
Recognise, sketch and interpret graphs of the following functions: (a) linear	
(b) quadratic.	Knowledge of symmetry and roots is required.
	Knowledge of turning points is not required.

C2.12 Extended content only.

C2.13 Extended content only.

3 Coordinate geometry

C3.1	Coordinates	Notes and examples
Use and interpret Cartesian coordinates in two dimensions.		
C3.2	Drawing linear graphs	Notes and examples
Draw s	straight-line graphs for linear equations.	Equations will be given in the form $y = mx + c$ (e.g. $y = -2x + 5$), unless a table of values is given.
C3.3	Gradient of linear graphs	Notes and examples
Find th	ne gradient of a straight line.	From a grid only.

C3.4 Extended content only.

C3.5	Equations of linear graphs	Notes and examples
Interpro	et and obtain the equation of a straight-line in the form $y = mx + c$.	 Questions may: use and request lines in the forms y = mx + c x = k involve finding the equation when the graph is given ask for the gradient or <i>y</i>-intercept of a graph from an equation, e.g. find the gradient and <i>y</i>-intercept of the graph with the equation y = 6x + 3. Candidates are expected to give equations of a line in a fully simplified form.
C3.6	Parallel lines	Notes and examples
Find th paralle	ne gradient and equation of a straight line I to a given line.	e.g. find the equation of the line parallel to $y = 4x - 1$ that passes through $(1, -3)$.

C3.7 Extended content only.

4 Geometry

C4.1 Geometrical terms	Notes and examples
 Use and interpret the following geometrical terms: point vertex line parallel perpendicular bearing right angle acute, obtuse and reflex angles interior and exterior angles similar congruent scale factor. 	Candidates are not expected to show that two shapes are congruent.
 2 Use and interpret the vocabulary of: triangles special quadrilaterals polygons nets simple solids. 	Includes the following terms: Triangles: • equilateral • isosceles • scalene • right-angled. Cuadrilaterals: • square • rectangle • rectangle • rectangle • riombus • rapezium. Polygons: • regular and irregular polygons • pentagon • hexagon • octagon.

C4.1 Geometrical terms (continued)	Notes and examples
3 Use and interpret the vocabulary of a circle.	 Simple solids: cube cuboid prism cylinder pyramid cone sphere (term 'hemisphere' not required) face surface edge. Includes the following terms: centre radius (plural radii) diameter circumference semicircle chord tangent arc sector segment.
C4.2 Geometrical constructions	Notes and examples
1 Measure and draw lines and angles.	A ruler should be used for all straight edges. Constructions of perpendicular bisectors and angle bisectors are not required.
2 Construct a triangle, given the lengths of all sides, using a ruler and pair of compasses only.	e.g. construct a rhombus by drawing two triangles. Construction arcs must be shown.
3 Draw, use and interpret nets.	Examples include:
	 draw nets of cubes, cuboids, prisms and pyramids use measurements from nets to calculate volumes and surface areas.

C4.3 Scale drawings	Notes and examples
1 Draw and interpret scale drawings.	A ruler must be used for all straight edges.
2 Use and interpret three-figure bearings.	Bearings are measured clockwise from north (000° to 360°). e.g. find the bearing of <i>A</i> from <i>B</i> if the bearing of <i>B</i> from <i>A</i> is 025°.
	Includes an understanding of the terms north, east, south and west. e.g. point D is due east of point C .

C4.4	Similarity	Notes and examples
------	------------	--------------------

Calculate lengths of similar shapes.

C4.5	Symmetry	Notes and examples
Recog symme	nise line symmetry and order of rotational etry in two dimensions.	Includes properties of triangles, quadrilaterals and polygons directly related to their symmetries.
C4.6	Angles	Notes and examples
1 Calc expl prop • si • si • ve • ai	eulate unknown angles and give simple anations using the following geometrical perties: um of angles at a point = 360° um of angles at a point on a straight line = 180° ertically opposite angles are equal ngle sum of a triangle = 180° and angle sum f a quadrilateral = 360°.	Knowledge of three-letter notation for angles is required, e.g. angle <i>ABC</i> . Candidates are expected to use the correct geometrical terminology when giving reasons for answers.
2 Calc expl • c • al	culate unknown angles and give geometric anations for angles formed within parallel lines: orresponding angles are equal Iternate angles are equal o-interior (supplementary) angles sum to 180°.	
3 Kno	w and use angle properties of regular	Includes exterior and interior angles, and angle

3 Know and use angle properties of regular polygons.

Includes exterior and interior angles, and angle sum.

C4.7 Circle theorems	Notes and examples
Calculate unknown angles and give explanations using the following geometrical properties of circles:angle in a semicircle = 90°	Candidates will be expected to use the geometrical properties listed in the syllabus when giving reasons for answers.
• angle between tangent and radius = 90°.	

C4.8 Extended content only.

5 Mensuration

C5.1	Units of measure	Notes and examples
Use m and ca quantit	etric units of mass, length, area, volume apacity in practical situations and convert ies into larger or smaller units.	 Units include: mm, cm, m, km mm², cm², m², km² mm³, cm³, m³ ml, l g, kg. Conversion between units includes: between different units of area, e.g. cm² ↔ m² between units of volume and capacity, e.g. m³ ↔ litres.
C5.2	Area and perimeter	Notes and examples
Carry o area o trapezi	out calculations involving the perimeter and f a rectangle, triangle, parallelogram and um.	Except for area of a triangle, formulas are not given.
C5.3	Circles, arcs and sectors	Notes and examples
 Carr circu Carr sect area of 30 	ry out calculations involving the umference and area of a circle. ry out calculations involving arc length and or area as fractions of the circumference and of a circle, where the sector angle is a factor 50°.	Answers may be asked for in terms of π . Formulas are given in the List of formulas.
C5.4	Surface area and volume	Notes and examples
Carry of the sur cu pri cyl sp sp py co	out calculations and solve problems involving face area and volume of a: boid sm inder here ramid ne.	 Answers may be asked for in terms of π. The following formulas are given in the List of formulas: curved surface area of a cylinder curved surface area of a cone surface area of a sphere volume of a prism volume of a pyramid volume of a cylinder volume of a cone

• volume of a sphere.

5 Mensuration (continued)

C5.5	Compound shapes and parts of shapes	Notes and examples
1 Carı invo	ry out calculations and solve problems lving perimeters and areas of:	Answers may be asked for in terms of π .
• C	ompound shapes	
• p	arts of shapes.	
2 Carı invo	ry out calculations and solve problems lving surface areas and volumes of:	
• C	ompound solids	
• p	arts of solids.	e.g. find the volume of half of a sphere.

Trigonometry 6

C6.1 Pythagoras' theorem	Notes and examples	
Know and use Pythagoras' theorem.		
C6.2 Right-angled triangles		
1 Know and use the sine, cosine and tangent ratios for acute angles in calculations involving sides and angles of a right-angled triangle.	Angles will be given in degrees and answers should be written in degrees, with decimals correct to one decimal place.	

2 Solve problems in two dimensions using Pythagoras' theorem and trigonometry.

Knowledge of bearings may be required.

- C6.3 Extended content only.
- C6.4 Extended content only.
- C6.5 Extended content only.
- C6.6 Extended content only.

7 Transformations and vectors

C7.1 Transformations	Notes and examples
Recognise, describe and draw the following transformations:1 Reflection of a shape in a vertical or horizontal line.	Questions will not involve combinations of transformations. A ruler must be used for all straight edges.
2 Rotation of a shape about the origin, vertices or midpoints of edges of the shape, through multiples of 90°.	
3 Enlargement of a shape from a centre by a scale factor.	Positive and fractional scale factors only.
4 Translation of a shape by a vector $\begin{bmatrix} x \\ y \end{bmatrix}$.	
C7.2 Extended content only.	
C7.3 Extended content only.	

C7.4 Extended content only.

8 Probability

C8.1 Introduction to probability	Notes and examples
1 Understand and use the probability scale from 0 to 1.	Probability notation is not required. Probabilities should be given as a fraction, decimal or percentage. Problems may require using information from tables, graphs or Venn diagrams (limited to two sets).
2 Calculate the probability of a single event.	
3 Understand that the probability of an event not occurring = 1 – the probability of the event occurring.	e.g. The probability that a counter is blue is 0.8. What is the probability that it is not blue?
C8.2 Relative and expected frequencies	Notes and examples
1 Understand relative frequency as an estimate of probability.	e.g. use results of experiments with a spinner to estimate the probability of a given outcome.
2 Calculate expected frequencies.	e.g. use probability to estimate an expected value from a population.
	Includes understanding what is meant by fair and bias.
C8.3 Probability of combined events	Notes and examples
Calculate the probability of combined events using, where appropriate:	Combined events will only be with replacement.
sample space diagrams	
Venn diagrams	Venn diagrams will be limited to two sets.
tree diagrams.	In tree diagrams, outcomes will be written at the

C8.4 Extended content only.

end of the branches and probabilities by the side of

the branches.

9 Statistics

C9.1 Classifying statistical data	Notes and examples
Classify and tabulate statistical data.	e.g. tally tables, two-way tables.
C9.2 Interpreting statistical data	Notes and examples
1 Read, interpret and draw inferences from tables and statistical diagrams.	
2 Compare sets of data using tables, graphs and statistical measures.	e.g. compare averages and ranges between two data sets.
3 Appreciate restrictions on drawing conclusions from given data.	
C9.3 Averages and range	Notes and examples
Calculate the mean, median, mode and range for individual data and distinguish between the purposes for which these are used.	Data may be in a list or frequency table, but will not be grouped.
C9.4 Statistical charts and diagrams	Notes and examples
 Draw and interpret: (a) bar charts (b) pie charts (c) pictograms (d) stem-and-leaf diagrams 	Includes composite (stacked) and dual (side-by- side) bar charts. Stem-and-leaf diagrams should have ordered data

9 Statistics (continued)

C9.5 Scatter diagrams	Notes and examples
 Draw and interpret scatter diagrams. Understand what is meant by positive, negative and zero correlation. 	Plotted points should be clearly marked, for example as small crosses (×).
3 Draw by eye, interpret and use a straight line of best fit.	 A line of best fit: should be a single ruled line drawn by inspection should extend across the full data set does not need to coincide exactly with any of the points but there should be a roughly even distribution of points either side of the line over its entire length.

C9.6 Extended content only.

C9.7 Extended content only.

Extended subject content

1 Number

E1.1 Types of number

Identify and use:

- natural numbers
- integers (positive, zero and negative)
- prime numbers
- square numbers
- cube numbers
- common factors
- common multiples
- rational and irrational numbers
- reciprocals.

Notes and examples

Example tasks include:

- convert between numbers and words, e.g. six billion is 6000000000
 10007 is ten thousand and seven
- express 72 as a product of its prime factors
- find the highest common factor (HCF) of two numbers
- find the lowest common multiple (LCM) of two numbers.

E1.2 Sets

Understand and use set language, notation and Venn diagrams to describe sets and represent relationships between sets.

Notes and examples

Venn diagrams are limited to two or three sets. The following set notation will be used:

- n(A) Number of elements in set A
- E "... is an element of ..."
- ∉ "… is not an element of …"
- A' Complement of set A
- Ø The empty set
- & Universal set
- $A \subseteq B$ A is a subset of B
- $A \not\subseteq B$ A is not a subset of B
- $A \cup B$ Union of A and B
- $A \cap B$ Intersection of A and B.

Example definition of sets:

- $A = \{x: x \text{ is a natural number}\}\$ $B = \{(x, y): y = mx + c\}$
- $C = \{x: a \leq x \leq b\}$

 $D = \{a, b, c, ...\}.$

E1.3 Powers and roots

Calculate with the following:

- squares
- square roots
- cubes
- cube roots
- other powers and roots of numbers.

Notes and examples

Includes recall of squares and their corresponding roots from 1 to 15, and recall of cubes and their corresponding roots of 1, 2, 3, 4, 5 and 10, e.g.:

- Write down the value of $\sqrt{169}$.
- Work out $5^2 \times \sqrt[3]{8}$.

E1.4	Fractions, decimals and percentages	Notes and examples
1 Use app • • • 2 Rec the	e the language and notation of the following in propriate contexts: proper fractions improper fractions mixed numbers decimals percentages. cognise equivalence and convert between se forms.	 Candidates are expected to be able to write fractions in their simplest form. Recurring decimal notation is required, e.g. 0.17 = 0.1777 0.123 = 0.1232323 0.123 = 0.123123 Includes converting between recurring decimals and fractions and vice versa, e.g. write 0.17 as a fraction.
E1.5	Ordering	Notes and examples
Order familia	quantities by magnitude and demonstrate arity with the symbols =, \neq , >, < , \geqslant and \leq .	
E1.6	The four operations	Notes and examples
Use th intege orderi	ne four operations for calculations with rs, fractions and decimals, including correct ng of operations and use of brackets.	 Includes: negative numbers improper fractions mixed numbers practical situations, e.g. temperature changes.
E1.7	Indices I	Notes and examples
1 Und neg	derstand and use indices (positive, zero, ative, and fractional).	Examples include: • $6^{\frac{1}{2}} = \sqrt{6}$ • $16^{\frac{1}{4}} = \sqrt[4]{16}$ • find the value of 7^{-2} , $81^{\frac{1}{2}}$, $8^{-\frac{2}{3}}$.
2 Und	derstand and use the rules of indices.	e.g. find the value of $2^{-3} \times 2^4$, $(2^3)^2$, $2^3 \div 2^4$.
E1.8	Standard form	Notes and examples
1 Use pos	the standard form $A \times 10^n$ where <i>n</i> is a itive or negative integer and $1 \leq A < 10$.	

- 2 Convert numbers into and out of standard form.
- 3 Calculate with values in standard form.

E1.9 Estimation	Notes and examples
 Round values to a specified degree of accuracy. Make estimates for calculations involving numbers, quantities and measurements. Round answers to a reasonable degree of accuracy in the context of a given problem. 	Includes decimal places and significant figures. e.g. write 5764 correct to the nearest thousand. e.g. by writing each number correct to 1 significant figure, estimate the value of $\frac{41.3}{9.79 \times 0.765}$.
E1.10 Limits of accuracy	Notes and examples
 Give upper and lower bounds for data rounded to a specified accuracy. Find upper and lower bounds of the results of calculations which have used data rounded to a specified accuracy. 	 e.g. write down the upper bound of a length measured correct to the nearest metre. Example calculations include: calculate the upper bound of the perimeter or the area of a rectangle given dimensions measured to the nearest centimetre find the lower bound of the speed given rounded values of distance and time.
E1.11 Ratio and proportion	Notes and examples
 Understand and use ratio and proportion to: give ratios in their simplest form divide a quantity in a given ratio use proportional reasoning and ratios in context 	e.g. 20:30:40 in its simplest form is 2:3:4. e.g. adapt recipes; use map scales; determine best

E1.12 Rates	Notes and examples
1 Use common measures of rate.	 e.g. calculate with: hourly rates of pay exchange rates between currencies flow rates fuel consumption.
2 Apply other measures of rate.	 e.g. calculate with: pressure density population density. Required formulas will be given in the question.
3 Solve problems involving average speed.	Knowledge of speed/distance/time formula is required. e.g. A cyclist travels 45 km in 3 hours 45 minutes. What is their average speed? Notation used will be, e.g. m/s (metres per second), g/cm ³ (grams per cubic centimetre).
E1.13 Percentages	Notes and examples
 E1.13 Percentages 1 Calculate a given percentage of a quantity. 2 Express one quantity as a percentage of another. 2 Calculate a generate as increased in the percentage. 	Notes and examples
 E1.13 Percentages 1 Calculate a given percentage of a quantity. 2 Express one quantity as a percentage of another. 3 Calculate percentage increase or decrease. 4 Calculate with simple and compound interest. 	Notes and examples Problems may include repeated percentage change. Formulas are not given.

Notes and examples

3 hours 15 minutes.

2° 30' 0''.

and to only round the final answer.

e.g. know not to round values within a calculation

e.g. in money 4.8 means \$4.80; in time 3.25 means

e.g. enter 2 hours 30 minutes as 2.5 hours or

E1.14 Using a calculator

1 Use a calculator efficiently.

Back to contents page

- 2 Enter values appropriately on a calculator.
- 3 Interpret the calculator display appropriately.

www.cambridgeinternational.org/igcse

E1.15 Time	Notes and examples		
1 Calculate with time: seconds (s), minutes (min), hours (h), days, weeks, months, years, including the relationship between units.	1 year = 365 days.		
 Calculate times in terms of the 24-hour and 12-hour clock. 	In the 24-hour clock, for example, 3.15 a.m. will be denoted by 03 15 and 3.15 p.m. by 15 15.		
3 Read clocks and timetables.	Includes problems involving time zones, local times and time differences.		
E1.16 Money	Notes and examples		
1 Calculate with money.			
2 Convert from one currency to another.			
E1.17 Exponential growth and decay	Notes and examples		
Use exponential growth and decay.	e.g. depreciation, population change. Knowledge of <i>e</i> is not required.		
E1.18 Surds	Notes and examples		

- 1 Understand and use surds, including simplifying expressions.
- 2 Rationalise the denominator.

Examples include:

- $\sqrt{20} = 2\sqrt{5}$
- $\sqrt{200} \sqrt{32} = 6\sqrt{2}$.

Examples include:

•
$$\frac{10}{\sqrt{5}} = 2\sqrt{5}$$

• $\frac{1}{-1+\sqrt{3}} = \frac{1+\sqrt{3}}{2}$.

Algebra and graphs 2

E2.1 Introduction to algebra	Notes and examples
1 Know that letters can be used to represent generalised numbers.	
2 Substitute numbers into expressions and formulas.	
E2.2 Algebraic manipulation	Notes and examples
1 Simplify expressions by collecting like terms.	Simplify means give the answer in its simplest form, e.g. $2a^2 + 3ab - 1 + 5a^2 - 9ab + 4 = 7a^2 - 6ab + 3$.
2 Expand products of algebraic expressions.	e.g. expand $3x(2x - 4y)$, $(3x + y)(x - 4y)$. Includes products of more than two brackets, e.g. expand $(x - 2)(x + 3)(2x + 1)$.
3 Factorise by extracting common factors.	Factorise means factorise fully, e.g. $9x^2 + 15xy = 3x(3x + 5y)$.
4 Factorise expressions of the form:	
• $ax + bx + kay + kby$	

- $a^2x^2 b^2y^2$ $a^2 + 2ab + b^2$
- $ax^2 + bx + c$
- $ax^3 + bx^2 + cx$.
- 5 Complete the square for expressions in the form $ax^2 + bx + c$.

E2.3 **Algebraic fractions**

1 Manipulate algebraic fractions.

Notes and examples Examples include:

- $\frac{x}{3} + \frac{x-4}{2}$
- $\bullet \quad \frac{2x}{3} \frac{3(x-5)}{2}$
- $\frac{3a}{4} \times \frac{9a}{10}$
- $\frac{3a}{4} \div \frac{9a}{10}$
- $\frac{1}{x-2} + \frac{x+1}{x-3}.$

e.g.
$$\frac{x^2 - 2x}{x^2 - 5x + 6}$$
.

2 Factorise and simplify rational expressions.

E2.4 Indices II	Notes and examples
1 Understand and use indices (positive, zero, negative and fractional).	e.g. solve: • $32^{x} = 2$ • $5^{x+1} = 25^{x}$.
2 Understand and use the rules of indices.	e.g. simplify: • $3x^{-4} \times \frac{2}{3}x^{\frac{1}{2}}$ • $\frac{2}{5}x^{\frac{1}{2}} \div 2x^{-2}$ • $\left(\frac{2x^5}{3}\right)^3$. Knowledge of logarithms is not required.

E2.5	Equations	Notes and examples

- 1 Construct expressions, equations and formulas.
- 2 Solve linear equations in one unknown.
- 3 Solve fractional equations with numerical and linear algebraic denominators.
- 4 Solve simultaneous linear equations in two unknowns.
- 5 Solve simultaneous equations, involving one linear and one non-linear.
- 6 Solve quadratic equations by factorisation, completing the square and by use of the quadratic formula.
- 7 Change the subject of formulas.

e.g. write an expression for the product of two consecutive even numbers.

Includes constructing simultaneous equations.

Examples include:

- 3x + 4 = 10
- 5-2x=3(x+7).

Examples include:

- $\frac{x}{2x+1} = 4$ • $\frac{2}{x+2} + \frac{3}{2x-1} = 1$
- $\frac{x}{x+2} = \frac{3}{x-6}$.

With powers no higher than two.

Includes writing a quadratic expression in completed square form.

Candidates may be expected to give solutions in surd form.

The quadratic formula is given in the List of formulas.

e.g. change the subject of a formula where:

- the subject appears twice
- there is a power or root of the subject.

E2.6 Inequalities	Notes and examples
1 Represent and interpret inequalities, including on a number line.	When representing and interpreting inequalities on a number line:
	 open circles should be used to represent strict inequalities (<, >)
	closed circles should be used to represent

- 2 Construct, solve and interpret linear inequalities.
- 3 Represent and interpret linear inequalities in two variables graphically.

- inclusive inequalities (\leq , \geq).

e.g. − 3 ≤ *x* < 1

Examples include:

- 3x < 2x + 4
- $-3 \leq 3x 2 < 7$.

The following conventions should be used:

- broken lines should be used to represent strict inequalities (<, >)
- solid lines should be used to represent inclusive • inequalities (\leq , \geq)
- shading should be used to represent unwanted regions (unless otherwise directed in the question).

Linear programming problems are **not** included.

Notes and examples

Subscript notation may be used, e.g. T_n is the *n*th term of sequence T.

Includes linear, quadratic, cubic and exponential sequences and simple combinations of these.

4 List inequalities that define a given region.

E2.7 Sequences

- 1 Continue a given number sequence or pattern.
- 2 Recognise patterns in sequences, including the term-to-term rule, and relationships between different sequences.
- 3 Find and use the *n*th term of sequences.

3 Draw and interpret graphs representing exponential growth and decay problems.

E2.8	Proportion	Notes and examples
Expres terms unkno	ss direct and inverse proportion in algebraic and use this form of expression to find wn quantities.	Includes linear, square, square root, cube and cube root proportion. Knowledge of proportional symbol (∞) is required.
E2.9	Graphs in practical situations	Notes and examples
1 Use inclu 2 Dra	and interpret graphs in practical situations uding travel graphs and conversion graphs. w graphs from given data.	Includes estimation and interpretation of the gradient of a tangent at a point.
3 App kine spe dec	bly the idea of rate of change to simple ematics involving distance–time and ed–time graphs, acceleration and eleration.	
4 Calo spe	culate distance travelled as area under a ed–time graph.	Areas will involve linear sections of the graph only.
E2.10	Graphs of functions	Notes and examples
1 Cor and form • • whe ratic	Instruct tables of values, and draw, recognise interpret graphs for functions of the following ns: ax^{n} (includes sums of no more than three of these) $ab^{x} + c$ ere $n = -2, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 2, 3$; <i>a</i> and <i>c</i> are onal numbers; and <i>b</i> is a positive integer.	Examples include: • $y = x^3 + x - 4$ • $y = 2x + \frac{3}{x^2}$ • $y = \frac{1}{4} \times 2^x$.
2 Solv find met	ve associated equations graphically, including ing and interpreting roots by graphical hods.	e.g. finding the intersection of a line and a curve.

E2.11 Sketching curves	Notes and examples
Recognise, sketch and interpret graphs of the following functions: (a) linear (b) quadratic (c) cubic (d) reciprocal (e) exponential.	Where <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are rational numbers, functions will be equivalent to: • $ax + by = c$ • $y = ax^2 + bx + c$ • $y = ax^3 + d$ • $y = ax^3 + bx^2 + cx$. Where <i>m</i> and <i>n</i> are integers, functions will be equivalent to: • $y = \frac{m}{x} + n$ • $y = m^x + n$. Knowledge of turning points, vertical and horizontal asymptotes, roots and symmetry is required. Finding turning points of quadratics by completing the square may be required.
E2.12 Differentiation	Notes and examples
 Estimate gradients of curves by drawing tangents. Use the derivatives of functions of the form <i>axⁿ</i>, where <i>a</i> is a rational constant and <i>n</i> is a positive integer or zero, and simple sums of not more than three of these. Apply differentiation to gradients and stationary points (turning points). Discriminate between maxima and minima by 	$\frac{dy}{dx}$ notation will be expected.
any method.	 an accurate sketch use of the second differential inspecting the gradient either side of a turning point. Candidates are not expected to identify points of inflection.

E2.13 Functions	Notes and examples
1 Understand functions, domain and range and use function notation.	Examples include: • $f(x) = 3x - 5$ • $g(x) = \frac{3(x + 4)}{5}$ • $h(x) = 2x^2 + 3$.

- 2 Understand and find inverse functions $f^{-1}(x)$.
- 3 Form composite functions as defined by gf(x) = g(f(x)).

e.g. $f(x) = \frac{3}{x+2}$ and $g(x) = (3x+5)^2$. Find fg(x). Give your answer as a fraction in its simplest form.

Candidates are **not** expected to find the domains and ranges of composite functions.

This topic may include mapping diagrams.

3 Coordinate geometry

E3.1	Coordinates	Notes and examples
Use ar dimen	nd interpret Cartesian coordinates in two sions.	
E3.2	Drawing linear graphs	Notes and examples
Draw s	straight-line graphs for linear equations.	Examples include: • $y = -2x + 5$ • $y = 7 - 4x$ • $3x + 2y = 5$.
E3.3	Gradient of linear graphs	Notes and examples
1 Finc	the gradient of a straight line.	
2 Calo coo	culate the gradient of a straight line from the rdinates of two points on it.	
E3.4	Length and midpoint	Notes and examples
1 Calo	culate the length of a line segment.	
2 Finc seg	the coordinates of the midpoint of a line ment.	

E3.5	Equations of linear graphs	Notes and examples
Interp	ret and obtain the equation of a straight-line	Questions may:
graph		 use and request lines in different forms, e.g. ax + by = c y = mx + c x = k involve finding the equation when the graph is given ask for the gradient or <i>y</i>-intercept of a graph from an equation, e.g. find the gradient and <i>y</i>-intercept of the graph with equation 5x + 4y = 8.
		Candidates are expected to give equations of a line in a fully simplified form.

3 Coordinate geometry (continued)

E3.6 Parallel lines	Notes and examples
Find the gradient and equation of a straight line parallel to a given line.	e.g. find the equation of the line parallel to $y = 4x - 1$ that passes through $(1, -3)$.
E3.7 Perpendicular lines	Notes and examples

• find the equation of the perpendicular bisector of the line joining the points (-3, 8) and (9, -2).

4 Geometry

E4.1	Geometrical terms	Notes and examples
1 Use terr • • • • • • • • • • • • • • • •	e and interpret the following geometrical ms: point vertex line plane parallel perpendicular perpendicular bisector bearing right angle acute, obtuse and reflex angles interior and exterior angles similar congruent scale factor.	Candidates are not expected to show that two shapes are congruent.
2 Use	e and interpret the vocabulary of: triangles special quadrilaterals polygons nets solids.	Includes the following terms. Triangles: • equilateral • isosceles • scalene • right-angled. Cuadrilaterals: • square • rectangle • kite • rhombus • parallelogram • trapezium. <i>continued</i>

E4.1 Geometrical terms (continued)	Notes and examples
3 Use and interpret the vocabulary of a circle.	Polygons: • regular and irregular polygons • hexagon • hexagon • octagon • octagon. Solids: • cube • cuboid • prism • cylinder • pyramid • corle • sphere • hemisphere • hemisphere • frustum • face • surface • edge. Includes the following terms: • centre • radius (plural radii) • diameter • circumference • semicircle • chord • tangent • major and minor arc • segment.

E4.2	Geometrical constructions	Notes and examples
1 Measu	ure and draw lines and angles.	A ruler should be used for all straight edges. Constructions of perpendicular bisectors and angle bisectors are not required.
2 Const sides,	truct a triangle, given the lengths of all , using a ruler and pair of compasses only.	e.g. construct a rhombus by drawing two triangles. Construction arcs must be shown.
3 Draw,	use and interpret nets.	Examples include:
		 draw nets of cubes, cuboids, prisms and pyramids use measurements from nets to calculate volumes and surface areas.
E4.3	Scale drawings	Notes and examples
E4.3	Scale drawings and interpret scale drawings.	Notes and examples A ruler must be used for all straight edges.
E4.3 \$ 1 Draw 2 Use a	Scale drawings and interpret scale drawings. Ind interpret three-figure bearings.	 Notes and examples A ruler must be used for all straight edges. Bearings are measured clockwise from north (000° to 360°). e.g. find the bearing of <i>A</i> from <i>B</i> if the bearing of <i>B</i> from <i>A</i> is 025°. Includes an understanding of the terms north, east, south and west. e.g. point <i>D</i> is due east of point <i>C</i>.
E4.3 \$	Scale drawings and interpret scale drawings. Ind interpret three-figure bearings.	Notes and examplesA ruler must be used for all straight edges.Bearings are measured clockwise from north (000° to 360°).e.g. find the bearing of A from B if the bearing of B from A is 025°.Includes an understanding of the terms north, east, south and west.e.g. point D is due east of point C.Notes and examples

- 2 Use the relationships between lengths and areas of similar shapes and lengths, surface areas and volumes of similar solids.
- 3 Solve problems and give simple explanations involving similarity.

Includes showing that two triangles are similar using geometric reasons.

Includes use of scale factor, e.g.

 $\frac{\text{Volume of } A}{\text{Volume of } B} = \frac{(\text{Length of } A)^3}{(\text{Length of } B)^3}$

E4.5 Symmetry

- 1 Recognise line symmetry and order of rotational symmetry in two dimensions.
- 2 Recognise symmetry properties of prisms, cylinders, pyramids and cones.

Notes and examples

Includes properties of triangles, quadrilaterals and polygons directly related to their symmetries.

e.g. identify planes and axes of symmetry.

E4.6 Angles	Notes and examples
 Calculate unknown angles and give simple explanations using the following geometrical properties: sum of angles at a point = 360° sum of angles at a point on a straight line = 180° vertically opposite angles are equal angle sum of a triangle = 180° and angle sum of a quadrilateral = 360°. Calculate unknown angles and give geometric explanations for angles formed within parallel lines: corresponding angles are equal alternate angles are equal co-interior (supplementary) angles sum to 180°. 	Knowledge of 3-letter notation for angles is required, e.g. angle <i>ABC</i> . Candidates are expected to use the correct geometrical terminology when giving reasons for answers.
3 Know and use angle properties of regular and irregular polygons.	Includes exterior and interior angles, and angle sum.
E4.7 Circle theorems I	Notes and examples
 Calculate unknown angles and give explanations using the following geometrical properties of circles: angle in a semicircle = 90° angle between tangent and radius = 90° angle at the centre is twice the angle at the circumference angles in the same segment are equal opposite angles of a cyclic quadrilateral sum to 	Candidates are expected to use the geometrical properties listed in the syllabus when giving reasons for answers.

180° (supplementary)alternate segment theorem.

E4.8 Circle theorems II

Use the following symmetry properties of circles:

- equal chords are equidistant from the centre
- the perpendicular bisector of a chord passes through the centre
- tangents from an external point are equal in length.

Notes and examples

Candidates are expected to use the geometrical properties listed in the syllabus when giving reasons for answers.

5 Mensuration

E5.1 Units of measure	Notes and examples
Use metric units of mass, length, area, volume and capacity in practical situations and convert quantities into larger or smaller units.	 Units include: mm, cm, m, km mm², cm², m², km² mm³, cm³, m³ ml, l g, kg. Conversion between units includes: between different units of area, e.g. cm² ↔ m² between units of volume and capacity, e.g. m³ ↔ litres.
E5.2 Area and perimeter	Notes and examples
Carry out calculations involving the perimeter and area of a rectangle, triangle, parallelogram and trapezium.	Except for the area of a triangle, formulas are not given.
E5.3 Circles, arcs and sectors	Notes and examples
1 Carry out calculations involving the circumference and area of a circle.	Answers may be asked for in terms of π . Formulas are given in the List of formulas.
2 Carry out calculations involving arc length and sector area as fractions of the circumference and area of a circle.	Includes minor and major sectors.
E5.4 Surface area and volume	Notes and examples
 Carry out calculations and solve problems involving the surface area and volume of a: cuboid prism cylinder sphere pyramid cone. 	 Answers may be asked for in terms of π. The following formulas are given in the List of formulas: curved surface area of a cylinder curved surface area of a cone surface area of a sphere volume of a prism volume of a pyramid volume of a cone volume of a cone volume of a cone volume of a sphere.

5 Mensuration (continued)

E5.5	Compound shapes and parts of shapes	Notes and examples
1 Ca inv	arry out calculations and solve problems volving perimeters and areas of:	Answers may be asked for in terms of π .
•	compound shapes	
•	parts of shapes.	
2 Ca inv	arry out calculations and solve problems volving surface areas and volumes of:	
•	compound solids	
٠	parts of solids.	e.g. find the surface area and volume of a frustum.

6 Trigonometry

E6.1 Pythagoras' theorem	Notes and examples
Know and use Pythagoras' theorem.	
E6.2 Right-angled triangles	Notes and examples
1 Know and use the sine, cosine and tangent ratios for acute angles in calculations involving sides and angles of a right-angled triangle.	Angles will be given in degrees and answers should be written in degrees, with decimals correct to one decimal place.
2 Solve problems in two dimensions using Pythagoras' theorem and trigonometry.	Knowledge of bearings may be required.
3 Know that the perpendicular distance from a point to a line is the shortest distance to the line.	
4 Carry out calculations involving angles of elevation and depression.	

E6.3	Exact trigonometric values	Notes and examples

Know the exact values of:

1 sin x and cos x for $x = 0^{\circ}$, 30° , 45° , 60° and 90° .

2 tan *x* for $x = 0^{\circ}$, 30° , 45° and 60° .

E6.4	Trigonometric functions	Notes and examples
1 Rec grap	ognise, sketch and interpret the following one of $0^{\circ} \leqslant x \leqslant 360^{\circ}$:	
•	$y = \sin x$	
•	$y = \cos x$	
•	$y = \tan x.$	
2 Solv cos	The trigonometric equations involving $\sin x$, x or $\tan x$, for $0^{\circ} \leq x \leq 360^{\circ}$.	e.g. solve: • $\sin x = \frac{\sqrt{3}}{2}$ for $0^\circ \le x \le 360^\circ$

• $2\cos x + 1 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

6 Trigonometry (continued)

E6.5 Non-right-angled triangles	Notes and examples
1 Use the sine and cosine rules in calculations involving lengths and angles for any triangle.	Includes problems involving obtuse angles and the ambiguous case.
2 Use the formula area of triangle = $\frac{1}{2}ab\sin C$.	The sine and cosine rules and the formula for area of a triangle are given in the List of formulas.
E6.6 Pythagoras' theorem and trigonometry in 3D	Notes and examples
Carry out calculations and solve problems in three dimensions using Pythagoras' theorem and trigonometry, including calculating the angle	

between a line and a plane.

7 Transformations and vectors

E7.1 Transformations	Notes and examples
Recognise, describe and draw the following transformations: 1 Reflection of a shape in a straight line.	Questions may involve combinations of transformations. A ruler must be used for all straight edges.
2 Rotation of a shape about a centre through multiples of 90°.	
 3 Enlargement of a shape from a centre by a scale factor. 4 Translation of a shape by a vector \$\begin{pmatrix} x \ y \end{pmatrix}\$. 	Positive, fractional and negative scale factors may be used.

E7.2	Vectors in two dimensions	Notes and examples
1 Des by (scribe a translation using a vector represented $\begin{bmatrix} x \\ y \end{bmatrix}$, \overrightarrow{AB} or a .	Vectors will be printed as \overrightarrow{AB} or a .

- 2 Add and subtract vectors.
- 3 Multiply a vector by a scalar.

E7.3 Magnitude of a vector

Calculate the magnitude of a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ as $\sqrt{x^2 + y^2}$.

E7.4 Vector geometry

- 1 Represent vectors by directed line segments.
- 2 Use position vectors.
- 3 Use the sum and difference of two or more vectors to express given vectors in terms of two coplanar vectors.
- 4 Use vectors to reason and to solve geometric problems.

Notes and examples

The magnitudes of vectors will be denoted by modulus signs, e.g.

• **a** is the magnitude of **a**

Notes and examples

• $|\overrightarrow{AB}|$ is the magnitude of \overrightarrow{AB} .

Examples include:

- show that vectors are parallel
- show that 3 points are collinear
- solve vector problems involving ratio and similarity.

8 Probability

E8.1	Introduction to probability	Notes and examples
1 Und 0 to	erstand and use the probability scale from 1.	P(A) is the probability of $AP(A')$ is the probability of not A
2 Und	erstand and use probability notation.	
3 Calc	ulate the probability of a single event.	Probabilities should be given as a fraction, decimal or percentage. Problems may require using information from tables, graphs or Venn diagrams.
4 Unde not c occu	erstand that the probability of an event occurring = 1 – the probability of the event urring.	e.g. $P(B) = 0.8$, find $P(B')$
E8.2	Relative and expected frequencies	Notes and examples
1 Und prob	erstand relative frequency as an estimate of ability.	e.g. use results of experiments with a spinner to estimate the probability of a given outcome.
2 Calc	ulate expected frequencies.	e.g. use probability to estimate an expected value from a population.
		Includes understanding what is meant by fair and bias.
E8.3	Probability of combined events	Notes and examples
Calcula where	ate the probability of combined events using, appropriate:	Combined events could be with or without replacement.
 sar Ver 	nple space diagrams	The notation $P(A \cap R)$ and $P(A \cup R)$ may be used
• •	III Ulagranis	in the context of Venn diagrams.
• tree	e diagrams.	On tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches.
E8.4	Conditional probability	Notes and examples
Calcula diagrar	ate conditional probability using Venn ns, tree diagrams and tables.	Knowledge of notation, $P(A B)$, and formulas relating to conditional probability is not required.

Statistics 9

E9.1	Classifying statistical data	Notes and examples
Classi	fy and tabulate statistical data.	e.g. tally tables, two-way tables.
E9.2	Interpreting statistical data	Notes and examples
1 Rea and	ad, interpret and draw inferences from tables I statistical diagrams.	
2 Cor stat	npare sets of data using tables, graphs and istical measures.	e.g. compare averages and measures of spread between two data sets.
3 App fror	preciate restrictions on drawing conclusions n given data.	
E9.3	Averages and measures of spread	Notes and examples
1 Cal ran and the	culate the mean, median, mode, quartiles, ge and interquartile range for individual data I distinguish between the purposes for which se are used.	
2 Cal diso	culate an estimate of the mean for grouped crete or grouped continuous data.	
3 Ider frec	ntify the modal class from a grouped juency distribution.	
E9.4	Statistical charts and diagrams	Notes and examples
Draw (a) ba (b) pi (c) pi	and interpret: ar charts e charts ctograms	Includes composite (stacked) and dual (side-by- side) bar charts.
(d) st	em-and-leat diagrams	with a key.

(e) simple frequency distributions.

9 Statistics (continued)

E9.5 Scatter diagrams	Notes and examples
1 Draw and interpret scatter diagrams.	Plotted points should be clearly marked, for example as small crosses (×).
2 Understand what is meant by positive, negative and zero correlation.	
3 Draw by eye, interpret and use a straight line of	A line of best fit:
best fit.	 should be a single ruled line drawn by inspection
	should extend across the full data set
	 does not need to coincide exactly with any of the points but there should be a roughly even distribution of points either side of the line over its entire length.
E9.6 Cumulative frequency diagrams	Notes and examples
1 Draw and interpret cumulative frequency tables and diagrams.	Plotted points on a cumulative frequency diagram should be clearly marked, for example as small crosses (×), and be joined with a smooth curve.
2 Estimate and interpret the median, percentiles, quartiles and interquartile range from cumulative frequency diagrams.	

E9.7	Histograms	Notes and examples
1 Drav 2 Calc	v and interpret histograms. Julate with frequency density.	On histograms, the vertical axis is labelled 'Frequency density'. Frequency density is defined as
		frequency density = frequency \div class width.

4 Details of the assessment

All candidates take **two** components.

Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1 and Paper 3. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended subject content and who are expected to achieve a grade C or above should be entered for Paper 2 and Paper 4. These candidates will be eligible for grades A* to E.

All papers assess AO1 Knowledge and understanding of mathematical techniques and AO2 Analyse, interpret and communicate mathematically.

All papers consist of structured and unstructured questions. Structured questions contain parts, e.g. (a), (b), (c)(i), etc., and unstructured questions do not.

Questions may assess more than one topic from the subject content.

For all papers, candidates write their answers on the question paper. They must show all necessary working in the spaces provided.

Additional materials for exams

For both Core and Extended papers, candidates should have the following geometrical instruments:

- a pair of compasses
- a protractor
- a ruler.

Tracing paper may be used as an additional material for all four papers. Candidates cannot bring their own tracing paper but may request it during the examination.

Candidates should have a scientific calculator for Papers 3 and 4; one with trigonometric functions is strongly recommended. Algebraic or graphical calculators are **not** permitted. Please see the *Cambridge Handbook* at **www.cambridgeinternational.org/eoguide** for guidance on use of calculators in the examinations. Calculators are **not** allowed for Paper 1 and Paper 2.

The Additional materials list for exams is updated before each series. You can view the list for the relevant series and year on our website in the Phase 4 – Before the exams section of the *Cambridge Exams Officer's Guide* at **www.cambridgeinternational.org/eoguide**

Core assessment

Paper 1 Non-calculator (Core)

Written paper, 1 hour 30 minutes, 80 marks

Use of a calculator is **not** allowed.

Candidates answer **all** questions.

This paper consists of questions based on the Core subject content, except for C1.14 Using a calculator.

This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Core candidates.

This written paper is an externally set assessment, marked by Cambridge.

Paper 3 Calculator (Core)

Written paper, 1 hour 30 minutes, 80 marks

A scientific calculator is required.

Candidates answer **all** questions.

This paper consists of questions based on the Core subject content.

Candidates should give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

To earn accuracy marks, candidates should avoid rounding figures until they have their final answer. Where candidates need to use a final answer in later parts of the question, they should use the value of the final answer **before** it was rounded.

Candidates should use the value of π from their calculator or the value of 3.142.

This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Core candidates.

This written paper is an externally set assessment, marked by Cambridge.

Extended assessment

Paper 2 Non-calculator (Extended)

Written paper, 2 hours, 100 marks

Use of a calculator is **not** allowed.

Candidates answer **all** questions.

This paper consists of questions based on the Extended subject content, except for E1.14 Using a calculator.

This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Extended candidates.

This written paper is an externally set assessment, marked by Cambridge.

Paper 4 Calculator (Extended)

Written paper, 2 hours, 100 marks

A scientific calculator is required.

Candidates answer **all** questions.

This paper consists of questions based on the Extended subject content.

Candidates should give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

To earn accuracy marks, candidates should avoid rounding figures until they have their final answer. Where candidates need to use a final answer in later parts of the question, they should use the value of the final answer **before** it was rounded.

Candidates should use the value of π from their calculator or the value of 3.142.

This paper will be weighted at 50% of the total qualification.

This is a compulsory component for Extended candidates.

This written paper is an externally set assessment, marked by Cambridge.

List of formulas - Extended (Paper 2 and Paper 4)

This list of formulas will be included on page 2 of Paper 2 and Paper 4.

Area, A , of triangle, base b , height h .	$A = \frac{1}{2}bh$
Area, A , of circle of radius r .	$A=\pi r^2$
Circumference, C , of circle of radius r .	$C = 2\pi r$
Curved surface area, A , of cylinder of radius r , height h .	$A = 2\pi rh$
Curved surface area, A , of cone of radius r , sloping edge l .	$A = \pi r l$
Surface area, A , of sphere of radius r .	$A = 4\pi r^2$
Volume, V , of prism, cross-sectional area A , length l .	V = Al
Volume, V , of pyramid, base area A , height h .	$V = \frac{1}{3}Ah$
Volume, V , of cylinder of radius r , height h .	$V = \pi r^2 h$
Volume, V , of cone of radius r , height h .	$V = \frac{1}{3}\pi r^2 h$
Volume, V , of sphere of radius r .	$V = \frac{4}{3}\pi r^3$
For the equation $ax^2 + bx + c = 0$, where $a \neq 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

For the triangle shown,

Mathematical conventions

Mathematics is a universal language where there are some similarities and differences around the world. The guidance below outlines the conventions used in Cambridge examinations and we encourage candidates to follow these conventions.

Working with graphs

- A **plot** of a graph should have points clearly marked, for example as small crosses (x), and **must**:
 - be drawn on graph or squared paper
 - cover a given range of values by calculating the coordinates of points and connecting them
 appropriately (where values are given, it will include enough points to determine a curve; where a table
 of values is not provided, the candidate must decide on the appropriate number of points required to
 determine the curve)
 - have each point plotted to an accuracy of within half of the smallest square on the grid.
- A **sketch** of a graph does not have to be accurate or to scale, nor does it need to be on graph or squared paper, but it **must**:
 - be drawn freehand
 - show the most important features, e.g. *x*-intercepts, *y*-intercepts, turning points, symmetry, with coordinates or values marked on the axes, where appropriate
 - have labelled axes, e.g. with x and y
 - interact with the axes appropriately, e.g. by intersecting or by tending towards
 - fall within the correct quadrants
 - show the correct long-term behaviour.
- Graphs should extend as far as possible across any given grid, within any constraints of the domain.
- Where graphs of functions are:
 - linear, they should be ruled
 - non-linear, the points should be joined with a smooth curve.
- A tangent to a curve should touch the curve at the required point and be in contact with the curve for the minimum possible distance. It should not cross the curve at the point where it is a tangent.
- Values should be read off a graph to an accuracy of within half of the smallest square on the grid.

Communicating mathematically

- If candidates are asked to show their working, they cannot gain full marks without clearly communicating their method, even if their final answer is correct.
- A numerical answer should not be given as a combination of fractions and decimals, e.g. $\frac{1}{0.2}$ is **not** acceptable.

Accuracy

- Answers are expected to be given in their simplest form unless the question states otherwise.
- Where a question asks for 'exact values' the answer may need to be given in terms of π or in surd form, depending on the question.
- Where answers are not exact values, they should be given to three significant figures unless a different accuracy is defined in the question.
- Answers that are exact to four or five significant figures should **not** be rounded unless the question states otherwise.
- In order to obtain an answer correct to an appropriate degree of accuracy, a higher degree of accuracy will often be needed within the working.
- If a question asks to prove or show a given answer to a specified degree of accuracy, candidates must show full working, intermediate answers and the final answer to at least one degree of accuracy more than that asked for.

Command words

Command words and their meanings help candidates know what is expected from them in the exams. The table below includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context.

Command word	What it means
Calculate	work out from given facts, figures or information
Construct	make an accurate drawing
Determine	establish with certainty
Describe	state the points of a topic / give characteristics and main features
Explain	set out purposes or reasons / make the relationships between things clear / say why and/or how and support with relevant evidence
Give	produce an answer from a given source or recall/memory
Plot	mark point(s) on a graph
Show (that)	provide structured evidence that leads to a given result
Sketch	make a simple freehand drawing showing the key features
State	express in clear terms
Work out	calculate from given facts, figures or information with or without the use of a calculator
Write	give an answer in a specific form
Write down	give an answer without significant working

Changes to this syllabus for 2025, 2026 and 2027

The syllabus has been reviewed and revised for first examination in 2025.

You must read the whole syllabus before planning your teaching programme.

Changes to syllabus content

- The wording of the learning outcomes has been updated and additional notes and examples included, to clarify the depth of teaching.
- The subject content has been refreshed and updated, with some topics and learning outcomes added and some removed. Significant changes to content have been summarised below.
- No new topics have been added to the Core subject content.
- Content removed from the Core subject content:
 - adding and subtracting vectors
 - multiplying a vector by a scalar
 - data collection (it is expected that data collection will be part of a course based on this syllabus, although it will not be assessed in an examination).
- Content added to the Core subject content:
 - inequalities
 - recall of certain squares, cubes and roots
- Content removed from the Extended subject content:
 - proper subsets
 - linear programming
 - congruence criteria (knowledge of congruence itself is still in the syllabus)
 - data collection (it is expected that data collection will be part of a course based on this syllabus, although it will not be assessed in an examination)
 - box-and-whisker plots
- Content added to the Extended subject content:
 - recall of certain squares, cubes and roots
 - surds
 - exponential graphs where the power is $\frac{1}{2}$ or $-\frac{1}{2}$
 - domain and range
 - exact trigonometric values
- Other content has been clarified within topics; you are advised to read the subject content in the syllabus carefully for details.
- The teaching time has not changed.

continued

Changes to syllabus content (continued)	 The Details of the assessment section includes: the List of formulas that is provided in the examinations mathematical conventions. The wording of the learner attributes has been updated to improve the clarity of wording. The wording of the aims has been updated to improve the clarity of wording but the meaning is the same. The wording of the assessment objectives (AOs) has been updated. There are no changes to the knowledge and skills being assessed for each AO.
(including changes to specimen papers)	 Anon-calculator assessment has been introduced at each tier to build candidates' confidence in working mathematically without a calculator. The examination papers have been rebalanced to provide improved accessibility and a better candidate experience. The marks, durations and weightings are the same for both papers in a tier. All examination papers will: include the List of formulas on page 2 include a mixture of structured and unstructured questions have questions that are the same standard as in the existing assessment. Changes to Paper 1 (Core) this is now a non-calculator paper, calculators are not allowed in the exam number of marks increased to 80 marks duration has changed to 1 hour 30 minutes weighting has changed to 50% Changes to Paper 3 (Core) this is now a non-calculator paper, calculators are not allowed in the exam number of marks increased to 100 marks duration has changed to 2 hours weighting has changed to 50% Changes to Paper 3 (Core) number of marks decreased to 80 marks duration has changed to 50% Changes to Paper 3 (Core) number of marks decreased to 80 marks duration has changed to 50%
Changes to assessment (including changes to specimen papers) (continued)	 Changes to Paper 4 (Extended) number of marks decreased to 100 marks duration has changed to 2 hours weighting has changed to 50% Calculators are still allowed in Paper 4. The specimen assessment materials have been updated to reflect the changes to the assessment.